Lecture 03 Simple Linear Models: Leverage, Hypothesis Tests, Goodness of Fit

09 September 2015

Taylor B. Arnold Yale Statistics STAT 312/612

Notes

- Problem Set #1 Online: Due Next Wednesday, 2015-09-16
- R code; online
- Course Pace
- Classroom

Goals for today

- 1. simulation of leverage
- 2. hypothesis tests for simple linear regression
- 3. goodness of fit, R^2
- 4. Galton's heights data

LEVERAGE SIMULATION

Hypothesis Tests

Z-Test

Take the simple linear regression model:

$$y_i = x_i\beta + \epsilon_i, \quad i = 1, \dots n.$$

With independent, identically distributed normal error terms:

 $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Last time we calculated the MLE estimator,

$$\widehat{\beta}_{MLE} = \frac{\sum_{i} y_i x_i}{\sum_{i} x_i^2}$$

And showed that it has a normal distribution with the following mean and variance:

$$\widehat{eta} \sim \mathcal{N}(eta, rac{\sigma^2}{\sum_i x_i^2})$$

If we want to test the hypothesis H_0 : $\beta = b$, we could construct a test statistic as follows:

$$z = rac{\widehat{eta} - b}{\sqrt{rac{\sigma^2}{\sum_i x_i^2}}}$$

Under the null hypothesis, we have

 $z|H_0 \sim \mathcal{N}(0,1)$

When we know σ^2 that is all we need to do, however outside of simulations we (very) rarely known the true variance of the noise. Otherwise, we first need to estimate it.

T-Test

The residuals from a given prediction of β are given by:

$$egin{aligned} r_i &= y_i - \widehat{y}_i \ &= y_i - x_i \widehat{eta} \end{aligned}$$

These represent an estimate of the error terms ϵ_i .

If r_i is the sampled and estimated version of ϵ_i , it would seem reasonable to have:

$$\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\approx\mathbb{E}\epsilon^{2}$$
$$=\sigma^{2}$$

Much like when estimating the mean of a randomly sampled normal distribution, this is approximately correct though the exact formula requires a small correction since

$$\mathbb{E}\left(\sum_{i}r_{i}^{2}\right) = (n-1)\cdot\sigma^{2}$$

I will delay a formal derivation of this until the multivariate case; conceptually seems reasonable that the estimate will be slightly smaller due to the estimation of r_i by the same data.

So, we instead use a corrected form to estimate the error variance, an estimator that we will call s^2 :

$$egin{aligned} s^2 &= rac{1}{n-1} \cdot \sum_i r_i^2 \ &= rac{1}{n-1} \cdot \sum_i (y_i - \widehat{y}_i)^2 \ &= rac{1}{n-1} \cdot \sum_i (y_i - x_i eta)^2 \end{aligned}$$

The ratio of our estimator to the true variance has a χ^2 distribution with n - 1 degrees of freedom.

$$(n-1)\cdot\frac{s^2}{\sigma^2}\sim\chi^2_{n-1}$$

The standard error is then given by:

S.E.
$$(\hat{\beta}) = \sqrt{\frac{s^2}{\sum_i x_i^2}}$$

= $\sqrt{\frac{(y - x_i \hat{\beta})^2}{(n-1) \cdot \sum_i x_i^2}}$

Finally, we can construct a test statistic:

$$t = \frac{\widehat{\beta} - b}{\text{S.E.}(\widehat{\beta})}$$

And under the null hypothesis, we have

 $t|H_0 \sim t_{n-1}$

On a related note, we can similarly calculate a confidence interval for β using the standard error. A $100(1 - \alpha)$ %. confidence interval is given by:

$$\widehat{\beta} \pm t_{n-1,1-\alpha/2} \cdot \text{S.E.}(\widehat{\beta})$$

For a reasonably large sample size *n*, we can approximate this by a normal distribution:

$$\widehat{\beta} \pm z_{1-\alpha/2} \cdot \text{S.E.}(\widehat{\beta})$$

F-Test

As an alternative to the T-test, consider squaring the test statistic

$$T^{2} = \left(\frac{\widehat{\beta} - b}{\text{S.E.}(\widehat{\beta})}\right)^{2}$$
$$= \frac{\left(\frac{\widehat{\beta} - b}{\sqrt{\sigma^{2}/\sum_{i} x_{i}^{2}}}\right)^{2}}{s^{2}/\sigma^{2}}$$
$$= \frac{U}{V}$$

Where $U \sim \chi_1^2$ and $(n-1) \cdot V \sim \chi_{n-1}^2$. And therefore $T^2 \sim F_{1,n-1}$.

Intercept Model

When we have the model $y = \alpha + x\beta + \epsilon$, the form of s^2 changes slightly:

$$s^2 = \frac{1}{n-2} \cdot \sum_i (y_i - \widehat{y}_i)^2$$

as well as the standard errors:

$$S.E.(\alpha) = \sqrt{s^2 \cdot \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (x_i - \bar{x})^2}\right)}$$
$$S.E.(\beta) = \sqrt{\frac{s^2}{\sum_i (x_i - \bar{x})^2}}$$

GOODNESS OF FIT

A common measurement of how well a linear model explains the data is the R^2 . For the non-intercept version, it can be written as:

$$R^2 = 1 - \frac{\sum_i (y_i - \widehat{y}_i)^2}{\sum_i (y_i)^2}$$

We can re-write this as:

$$R^{2} = \left(\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2} \cdot \sum_{i} y_{i}^{2}}}\right)^{2}$$

The more typically seen version compares the estimated residuals with the centered values of *y*.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

With a bit of algebraic manipulation, we see that this is equal to the squared sample correlation of *x* and *y*:

$$R^{2} = \left(\frac{\sum_{i}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i}(x_{i}-\bar{x})^{2}\cdot\sum_{i}(y_{i}-\bar{y})^{2}}}\right)^{2}$$
$$= cor(x, y)^{2}$$