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Notes

– Problem Set #1 Online: Due Next Wednesday, 2015-09-16
– R code; online
– Course Pace
– Classroom



Goals for today

1. simulation of leverage
2. hypothesis tests for simple linear regression
3. goodness of fit, R2

4. Galton’s heights data



Leverage Simulation



Hypothesis Tests



Z-Test
Take the simple linear regression model:

yi = xiβ + ϵi, i = 1, . . . n.

With independent, identically distributed normal error terms:

ϵi ∼ N (0, σ2)



Last time we calculated the MLE estimator,

β̂MLE =

∑
i yixi∑
i x

2
i

And showed that it has a normal distribution with the following
mean and variance:

β̂ ∼ N (β,
σ2∑
i x

2
i
)



If we want to test the hypothesis H0 : β = b, we could construct a
test statistic as follows:

z =
β̂ − b√

σ2∑
i x

2
i

Under the null hypothesis, we have

z|H0 ∼ N (0, 1)



When we know σ2 that is all we need to do, however outside of
simulations we (very) rarely known the true variance of the noise.
Otherwise, we first need to estimate it.



T-Test
The residuals from a given prediction of β are given by:

ri = yi − ŷi

= yi − xiβ̂

These represent an estimate of the error terms ϵi.



If ri is the sampled and estimated version of ϵi, it would seem
reasonable to have:

1

n

n∑
i=1

r2i ≈ Eϵ2

= σ2



Much like when estimating the mean of a randomly sampled normal
distribution, this is approximately correct though the exact formula
requires a small correction since

E

(∑
i

r2i

)
= (n− 1) · σ2

I will delay a formal derivation of this until the multivariate case;
conceptually seems reasonable that the estimate will be slightly
smaller due to the estimation of ri by the same data.



So, we instead use a corrected form to estimate the error variance,
an estimator that we will call s2:

s2 =
1

n− 1
·
∑
i

r2i

=
1

n− 1
·
∑
i

(yi − ŷi)2

=
1

n− 1
·
∑
i

(yi − xiβ)2



The ratio of our estimator to the true variance has a χ2 distribution
with n− 1 degrees of freedom.

(n− 1) · s
2

σ2
∼ χ2

n−1



The standard error is then given by:

S.E.(β̂) =

√
s2∑
i x

2
i

=

√
(y− xiβ̂)2

(n− 1) ·
∑

i x
2
i



Finally, we can construct a test statistic:

t =
β̂ − b

S.E.(β̂)

And under the null hypothesis, we have

t|H0 ∼ tn−1



On a related note, we can similarly calculate a confidence interval
for β using the standard error. A 100(1− α)%. confidence interval is
given by:

β̂ ± tn−1,1−α/2 · S.E.(β̂)

For a reasonably large sample size n, we can approximate this by a
normal distribution:

β̂ ± z1−α/2 · S.E.(β̂)



F-Test
As an alternative to the T-test, consider squaring the test statistic

T2 =

(
β̂ − b

S.E.(β̂)

)2

=

(
β̂−b√

σ2/
∑

i x
2
i

)2

s2/σ2

=
U
V

Where U ∼ χ2
1 and (n− 1) · V ∼ χ2

n−1.

And therefore T2 ∼ F1,n−1.



Intercept Model
When we have the model y = α+ xβ + ϵ, the form of s2 changes
slightly:

s2 =
1

n− 2
·
∑
i

(yi − ŷi)2

as well as the standard errors:

S.E.(α) =

√
s2 ·
(
1

n
+

x̄2∑
i(xi − x̄)2

)

S.E.(β) =

√
s2∑

i(xi − x̄)2



Goodness of Fit



R2

A common measurement of how well a linear model explains the
data is the R2. For the non-intercept version, it can be written as:

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi)2

We can re-write this as:

R2 =

 ∑
i xiyi√∑

i x
2
i ·
∑

i y
2
i

2



The more typically seen version compares the estimated residuals
with the centered values of y.

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

With a bit of algebraic manipulation, we see that this is equal to the
squared sample correlation of x and y:

R2 =

( ∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2 ·
∑

i(yi − ȳ)2

)2

= cor(x, y)2


