# Lecture 05 Geometry of Least Squares 

16 September 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612

## Goals for today

1. Geometry of least squares
2. Projection matrix P and annihilator matrix M
3. Multivariate Galton Heights

## Geometry of Least SQUARES

Last time, we established that the least squares solution to the model:

$$
y=X \beta+\epsilon
$$

Yields the solution:

$$
\widehat{\beta}=\left(X^{t} X\right)^{-1} X^{t} y
$$

As long as the matrix $X^{t} X$ is invertable.

Define the column space of the matrix $X$ as:

$$
\mathcal{R}(X)=\left\{\theta: \theta=X b, b \in \mathbb{R}^{p}\right\} \subset \mathbb{R}^{n}
$$

This is the space spanned by the $p$ columns of $X$ sitting in $n$-dimensional space.

Define the column space of the matrix $X$ as:

$$
\mathcal{R}(X)=\left\{\theta: \theta=X b, b \in \mathbb{R}^{p}\right\} \subset \mathbb{R}^{n}
$$

This is the space spanned by the $p$ columns of $X$ sitting in $n$-dimensional space.

Notice that the least squares problem can be re-written as:

$$
\widehat{\theta}=\underset{\theta}{\arg \min }\left\{\|y-\theta\|_{2}^{2}, \quad \text { s.t } \quad \theta \in \mathcal{R}(X)\right\}
$$

Where then $\widehat{\beta}=X \widehat{\theta}$.

Theorem 3.2 (p.g. 37, Rao \& Toutenburg) The minimum, $\widehat{\theta}$ is attained when $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. In other words, $(y-\widehat{\theta})$ is perpendicular to all vectors in $\mathcal{R}$.

## Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$.

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}$ :

$$
\|y-\theta\|_{2}^{2}=(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta)
$$

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}:$

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta)
\end{aligned}
$$

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}:$

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)
\end{aligned}
$$

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}$ :

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta) \\
& =\|y-\widehat{\theta}\|_{2}^{2}+\|\widehat{\theta}-\theta\|_{2}^{2}
\end{aligned}
$$

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}:$

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta) \\
& =\|y-\widehat{\theta}\|_{2}^{2}+\|\widehat{\theta}-\theta\|_{2}^{2} \\
& \geq\|y-\widehat{\theta}\|_{2}^{2}
\end{aligned}
$$

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}$ :

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta) \\
& =\|y-\widehat{\theta}\|_{2}^{2}+\|\widehat{\theta}-\theta\|_{2}^{2} \\
& \geq\|y-\widehat{\theta}\|_{2}^{2}
\end{aligned}
$$

So, if such a $\widehat{\theta}$ exists it attains the minimum. To see that it does, write $\widehat{\theta}=X \widehat{\beta}$.

Proof: Pick a $\widehat{\theta}$ in $\mathcal{R}$ such that $(y-\widehat{\theta}) \perp \mathcal{R}(X)$. This implies that $X^{t}(y-\widehat{\theta})=0$. Then for all $\theta \in \mathcal{R}$ :

$$
\begin{aligned}
\|y-\theta\|_{2}^{2} & =(y-\widehat{\theta}+\widehat{\theta}-\theta)^{t}(y-\widehat{\theta}+\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta)+2(y-\widehat{\theta})^{t}(\widehat{\theta}-\theta) \\
& =(y-\widehat{\theta})^{t}(y-\widehat{\theta})+(\widehat{\theta}-\theta)^{t}(\widehat{\theta}-\theta) \\
& =\|y-\widehat{\theta}\|_{2}^{2}+\|\widehat{\theta}-\theta\|_{2}^{2} \\
& \geq\|y-\widehat{\theta}\|_{2}^{2}
\end{aligned}
$$

So, if such a $\widehat{\theta}$ exists it attains the minimum. To see that it does, write $\widehat{\theta}=X \widehat{\beta}$. Then:

$$
\begin{aligned}
X^{t}(y-\widehat{\theta}) & =X^{t}(y-X \widehat{\beta}) \\
& =X^{t} y-X^{t} X \widehat{\beta}
\end{aligned}
$$

To see that such a $\widehat{\theta}$ does exist, write $\widehat{\theta}=X \widehat{\beta}$.

To see that such a $\widehat{\theta}$ does exist, write $\widehat{\theta}=X \widehat{\beta}$. Then:

$$
X^{t}(y-\widehat{\theta})=X^{t}(y-X \widehat{\beta})
$$

To see that such a $\widehat{\theta}$ does exist, write $\widehat{\theta}=X \widehat{\beta}$. Then:

$$
\begin{aligned}
X^{t}(y-\widehat{\theta}) & =X^{t}(y-X \widehat{\beta}) \\
& =X^{t} y-X^{t} X \widehat{\beta}
\end{aligned}
$$

To see that such a $\widehat{\theta}$ does exist, write $\widehat{\theta}=X \widehat{\beta}$. Then:

$$
\begin{aligned}
X^{t}(y-\widehat{\theta}) & =X^{t}(y-X \widehat{\beta}) \\
& =X^{t} y-X^{t} X \widehat{\beta} \\
& =X^{t} y-X^{t} X\left(X^{t} X\right)^{-1} X^{t} y
\end{aligned}
$$

To see that such a $\widehat{\theta}$ does exist, write $\widehat{\theta}=X \widehat{\beta}$. Then:

$$
\begin{aligned}
X^{t}(y-\widehat{\theta}) & =X^{t}(y-X \widehat{\beta}) \\
& =X^{t} y-X^{t} X \widehat{\beta} \\
& =X^{t} y-X^{t} X\left(X^{t} X\right)^{-1} X^{t} y \\
& =X^{t} y-X^{t} y \\
& =0
\end{aligned}
$$

And therefore our proposed $\widehat{\theta} \in \mathcal{R}(X)$.

From this geometric interpretation of the least squares estimator, we introduce an important matrix $P_{X}$ called the projection matrix.

$$
P_{X}=X\left(X^{t} X\right)^{-1} X^{t}
$$

I'll often drop the subscript as it should be understood that the projection is on the data matrix $X$.

Notice that $P X=X$ :

$$
\begin{aligned}
P X & =X\left(X^{t} X\right)^{-1} X^{t} X \\
& =X
\end{aligned}
$$

Notice that $P X=X$ :

$$
\begin{aligned}
P X & =X\left(X^{t} X\right)^{-1} X^{t} X \\
& =X
\end{aligned}
$$

And $P y$ gives the fitted values $\widehat{y}$ :

$$
\begin{aligned}
P y & =X\left(X^{t} X\right)^{-1} X^{t} X y \\
& =X \widehat{\beta} \\
& =\widehat{\theta} \\
& =\widehat{y}
\end{aligned}
$$

Do you see why the projection matrix is called the projection matrix?

Notice that $P X=X$ :

$$
\begin{aligned}
P X & =X\left(X^{t} X\right)^{-1} X^{t} X \\
& =X
\end{aligned}
$$

And $P y$ gives the fitted values $\widehat{y}$ :

$$
\begin{aligned}
P y & =X\left(X^{t} X\right)^{-1} X^{t} X y \\
& =X \widehat{\beta} \\
& =\widehat{\theta} \\
& =\widehat{y}
\end{aligned}
$$

Do you see why the projection matrix is called the projection matrix?


The projection matrix is sometimes called the hat matrix. Any thoughts as to why?

A closely related matrix to $P$ is the annihilator matrix $M$ :

$$
M=I_{n}-P
$$

A closely related matrix to $P$ is the annihilator matrix $M$ :

$$
M=I_{n}-P
$$

It gets its name because $M X=0$.

The matrix $P=X\left(X^{t} X\right)^{-1} X^{t}$ is clearly symmetric. It is also idempotent:

$$
P^{2}=X\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1} X^{t}
$$

The matrix $P=X\left(X^{t} X\right)^{-1} X^{t}$ is clearly symmetric. It is also idempotent:

$$
\begin{aligned}
P^{2} & =X\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1} X^{t} \\
& =X\left(X^{t} X\right)^{-1}\left(X^{t} X\right)\left(X^{t} X\right)^{-1} X^{t}
\end{aligned}
$$

The matrix $P=X\left(X^{t} X\right)^{-1} X^{t}$ is clearly symmetric. It is also idempotent:

$$
\begin{aligned}
P^{2} & =X\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1} X^{t} \\
& =X\left(X^{t} X\right)^{-1}\left(X^{t} X\right)\left(X^{t} X\right)^{-1} X^{t} \\
& =X\left(X^{t} X\right)^{-1} X^{t}
\end{aligned}
$$

The matrix $P=X\left(X^{t} X\right)^{-1} X^{t}$ is clearly symmetric. It is also idempotent:

$$
\begin{aligned}
P^{2} & =X\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1} X^{t} \\
& =X\left(X^{t} X\right)^{-1}\left(X^{t} X\right)\left(X^{t} X\right)^{-1} X^{t} \\
& =X\left(X^{t} X\right)^{-1} X^{t} \\
& =P
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

And idempotent:

$$
\begin{aligned}
M^{2} & =\left(I_{n}-P\right)^{2} \\
& =\left(I_{n}-P\right)\left(I_{n}-P\right)
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

And idempotent:

$$
\begin{aligned}
M^{2} & =\left(I_{n}-P\right)^{2} \\
& =\left(I_{n}-P\right)\left(I_{n}-P\right) \\
& =I_{n}-2 * P+P^{2}
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

And idempotent:

$$
\begin{aligned}
M^{2} & =\left(I_{n}-P\right)^{2} \\
& =\left(I_{n}-P\right)\left(I_{n}-P\right) \\
& =I_{n}-2 * P+P^{2} \\
& =I_{n}-2 * P+P
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

And idempotent:

$$
\begin{aligned}
M^{2} & =\left(I_{n}-P\right)^{2} \\
& =\left(I_{n}-P\right)\left(I_{n}-P\right) \\
& =I_{n}-2 * P+P^{2} \\
& =I_{n}-2 * P+P \\
& =I_{n}-P \\
& =M
\end{aligned}
$$

M is also symmetric

$$
\begin{aligned}
M^{t} & =\left(I_{n}-P\right)^{t} \\
& =\left(I_{n}-P^{t}\right) \\
& =M
\end{aligned}
$$

And idempotent:

$$
\begin{aligned}
M^{2} & =\left(I_{n}-P\right)^{2} \\
& =\left(I_{n}-P\right)\left(I_{n}-P\right) \\
& =I_{n}-2 * P+P^{2} \\
& =I_{n}-2 * P+P \\
& =I_{n}-P \\
& =M
\end{aligned}
$$

These properties both make sense given the geometric interpretation of $P$ and $M$ as projections; into the column space of $X$ and the compliment of the columns space of $X$.

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
r=y-x \widehat{\beta}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y
\end{aligned}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y \\
& =\left(I_{n}-P\right) y
\end{aligned}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y \\
& =\left(I_{n}-P\right) y \\
& =M y
\end{aligned}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y \\
& =\left(I_{n}-P\right) y \\
& =M y \\
& =M(X \beta+\epsilon)
\end{aligned}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y \\
& =\left(I_{n}-P\right) y \\
& =M y \\
& =M(X \beta+\epsilon) \\
& =M \epsilon
\end{aligned}
$$

These properties are quite useful. Notice how we can easily rewrite the following for the residual vector $r=y-X \widehat{\beta}$ :

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
& =y-P y \\
& =\left(I_{n}-P\right) y \\
& =M y \\
& =M(X \beta+\epsilon) \\
& =M \epsilon
\end{aligned}
$$

The matricies $P$ and $M$ not only help make the derivation easier, they also give geometric insight into what we are doing.

One particularly useful formula will be writing the squared residuals as:

$$
\begin{aligned}
\|r\|_{2}^{2} & =\|M \epsilon\|_{2}^{2} \\
& =\epsilon^{t} M^{t} M \epsilon \\
& =\epsilon^{t} M \epsilon
\end{aligned}
$$

One particularly useful formula will be writing the squared residuals as:

$$
\begin{aligned}
\|r\|_{2}^{2} & =\|M \epsilon\|_{2}^{2} \\
& =\epsilon^{t} M^{t} M \epsilon \\
& =\epsilon^{t} M \epsilon
\end{aligned}
$$

So the matrix $M$ translates the sum of squared residuals into the sum of the square errors, which are estimated by the residuals.

## Applications

