Lecture 06 Finite-Sample Properties of OLS

21 September 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612

Goals for today

1. Linear models assumptions
2. OLS Finite sample properties

LINEAR MODELS ASSUMPTIONS

I. Linearity

We observe a pair of random variables (y, X), which have the following relationship for some random vector ϵ and fixed vector β :

$$
y=X \beta+\epsilon
$$

We assume that the following dimensions hold.

$$
\begin{aligned}
& y \in \mathbb{R}^{n} \\
& X \in \mathbb{R}^{n \times p} \\
& \beta \in \mathbb{R}^{p} \\
& \epsilon \in \mathbb{R}^{n}
\end{aligned}
$$

II. Strict exogeneity

For all X, we have:

$$
\begin{equation*}
\mathbb{E}(\epsilon \mid X)=0 \tag{1}
\end{equation*}
$$

The 'strict' part comes from the conditional on all of X.
Notice that this implies the weaker assumption we used with simple linear models:

$$
\begin{align*}
\mathbb{E}(\epsilon) & =\mathbb{E}\{\mathbb{E}(\epsilon \mid X)\} \tag{2}\\
& =\mathbb{E}\{0\} \tag{3}\\
& =0 \tag{4}
\end{align*}
$$

III. No multicollinearity

We have:

$$
\mathbb{P}[\operatorname{rank}(X)=p]=1
$$

When broken, it is impossible to do inference on β without additional assumptions.

IV. Spherical errors

The variance of the errors is given by:

$$
\mathbb{V}(\epsilon \mid X)=\sigma^{2} \mathbb{I}_{n}
$$

Recall that when $\mathbb{E} u=0$ we have $\mathbb{V} u=\mathbb{E}\left(u u^{t}\right)$.
We can break this assumption into two parts; the homoscedasticity assumption:

$$
\mathbb{E}\left(\epsilon_{i}^{2} \mid X\right)=\sigma^{2}
$$

and no autocorrelation assumption:

$$
\mathbb{E}\left(\epsilon_{i} \epsilon_{j} \mid X\right)=0 \quad i \neq j
$$

V. Normality

The final, most restrictive assumption, is that the errors follow a multivariate normal distribution:

$$
\epsilon \mid X \sim \mathcal{N}\left(0, \sigma^{2} \mathbb{I}_{n}\right)
$$

Classical linear model assumptions

I. Linearity $\quad Y=X \beta+\epsilon$
II. Strict exogeneity $\mathbb{E}(\epsilon \mid X)=0$
III. No multicollinearity $\mathbb{P}[\operatorname{rank}(X)=p]=1$
IV. Spherical errors $\quad \mathbb{V}(\epsilon \mid X)=\sigma^{2} \mathbb{I}_{n}$
V. Normality $\quad \epsilon \mid X \sim \mathcal{N}\left(0, \sigma^{2} \mathbb{I}_{n}\right)$

Finite sample

Ordinary least squares

We have already derived the ordinary least square estimator:

$$
\widehat{\beta}=\left(X^{t} X\right)^{-1} X^{t} y
$$

If we define the following values:

$$
\begin{aligned}
& S_{x x}=\frac{1}{n} X^{t} X \\
& s_{x y}=\frac{1}{n} X^{t} y
\end{aligned}
$$

The ordinary least squares estimator can also be written:

$$
\widehat{\beta}=S_{x x}^{-1} s_{x y}
$$

A form that will be useful for large sample theory.

Special matricies

Last time we defined the following matricies:

$$
\begin{aligned}
P & =X\left(X^{t} X\right)^{-1} X^{t} \\
M & =\mathbb{I}_{n}-P
\end{aligned}
$$

Today we have one more matrix A that does not have a direct geometric interpretation but is nonetheless very useful:

$$
\begin{aligned}
A & =\left(X^{t} X\right)^{-1} X^{t} \\
A y & =\widehat{\beta}
\end{aligned}
$$

Last time we showed that:

$$
\begin{aligned}
P^{2} & =P^{t}=P \\
M^{2} & =M^{t}=M \\
P X & =X \\
M X & =0 \\
P y & =X \beta \\
M y & =M \epsilon=r
\end{aligned}
$$

The matrix A is not square, but the outer product has a nice property:

$$
\begin{aligned}
A A^{t} & =\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1} \\
& =\left(X^{t} X\right)^{-1}
\end{aligned}
$$

Three final definitions

The residuals, estimate of the σ^{2} parameter, and sum of squared residuals are given as:

$$
\begin{aligned}
r & =y-X \widehat{\beta} \\
s^{2} & =\frac{1}{n-p} r^{t} r \\
\mathrm{SSR} & =r^{t} r
\end{aligned}
$$

Finite sample properties

Under assumptions I-III:

$$
\text { (A) } \mathbb{E}(\widehat{\beta} \mid X)=\beta
$$

Under assumptions I-IV:
(B) $\mathbb{V}(\widehat{\beta} \mid X)=\sigma^{2}\left(X^{t} X\right)^{-1}$
(C) $\widehat{\beta}$ is the best linear unbiased estimator (Gauss-Markov)
(D) $\operatorname{Cov}(\widehat{\beta}, r \mid X)=0$
(E) $\mathbb{E}\left(s^{2} \mid X\right)=\sigma^{2}$

Under assumptions I-V:
(F) $\widehat{\beta}$ achieves the Cramér-Rao lower bound

(A) Unbiased regression estimate $\widehat{\beta}$

Notice that the error in our estimate can be re-written in terms of the matrix A :

$$
\begin{aligned}
\widehat{\beta}-\beta & =\left(X^{t} X\right)^{-1} X^{t} y-\beta \\
& =\left(X^{t} X\right)^{-1} X^{t}(X \beta+\epsilon)-\beta \\
& =\left(X^{t} X\right)^{-1} X^{t} X \beta+\left(X^{t} X\right)^{-1} X^{t} \epsilon-\beta \\
& =\beta+\left(X^{t} X\right)^{-1} X^{t} \epsilon-\beta \\
& =A \epsilon
\end{aligned}
$$

From here, we can derive the unbiased result easily:

$$
\begin{aligned}
\mathbb{E}(\widehat{\beta}-\beta \mid X) & =\mathbb{E}(A \epsilon \mid X) \\
& =A \cdot \mathbb{E}(\epsilon \mid X) \\
& =0
\end{aligned}
$$

(B) Form of the variance

The formula for the variance of the ordinary least squares estimator can be derived from our assumptions and prior results.

$$
\begin{aligned}
\mathbb{V}(\widehat{\beta} \mid X) & =\mathbb{V}(\widehat{\beta}-\beta \mid X) \\
& =\mathbb{V}(A \epsilon \mid X) \\
& =A \mathbb{V}(\epsilon \mid X) A^{t} \\
& =A \mathbb{E}\left(\epsilon \epsilon^{t} \mid X\right) A^{t} \\
& =A\left(\sigma^{2} \mathbb{I}_{n}\right) A^{t} \\
& =\sigma^{2} A A^{t} \\
& =\sigma^{2}\left(X^{t} X\right)^{-1}
\end{aligned}
$$

(E) Unbiased s^{2}

We have already established that $r^{t} r=\epsilon^{t} M \epsilon$, so all we need to do is show that $\mathbb{E}\left(\epsilon^{t} M \epsilon \mid X\right)=\sigma^{2}(n-p)$.

We can write this expected value in terms of the trace of M :

$$
\begin{aligned}
\mathbb{E}\left(\epsilon^{t} M \epsilon \mid X\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i, j} \mathbb{E}\left(\epsilon_{i} \epsilon_{j} \mid X\right) \\
& =\sum_{i=1}^{n} m_{i, i} \sigma^{2} \\
& =\sigma^{2} \sum_{i=1}^{n} m_{i, i} \\
& =\sigma^{2} \operatorname{tr}(M)
\end{aligned}
$$

Now we simply need to calculate the trace of M :

$$
\begin{aligned}
\operatorname{tr}(M) & =\operatorname{tr}\left(\mathbb{I}_{n}-P\right) \\
& =\operatorname{tr}\left(\mathbb{I}_{n}\right)-\operatorname{tr}(P) \\
& =n-\operatorname{tr}(P)
\end{aligned}
$$

And then,

$$
\begin{aligned}
\operatorname{tr}(P) & =\operatorname{tr}\left(X\left(X^{t} X\right)^{-1} X^{t}\right) \\
& =\operatorname{tr}\left(\left(X^{t} X\right)^{-1} X^{t} X\right) \\
& =\operatorname{tr}\left(\mathbb{I}_{p}\right) \\
& =p
\end{aligned}
$$

Plugging back into the original yields the result.

