Lecture o8 Measuring Airline On-time Performance

28 September 2015

Taylor B. Arnold Yale Statistics STAT 312/612

Notes

- Problem Set #2 Due next class
- Problem Set #3 Due the following Wednesday
- Midtern I Two weeks from today

Goals for today

- Review of time
- Simulation of the multivariate F-test
- Introduction to ASA airline dataset

Review from Last Time

We did a lot of matrix manipulations in the proofs of these two results. The most important 'big picture' results to remember are:

- If *B* is a symmetric idempotent matrix and $u \sim \mathcal{N}(0, \mathbb{I}_n)$, then $u^t B u \sim \chi^2_{tr(B)}$.
- If *B* is a symmetric idempotent matrix, then all of *B*'s eigenvalues are 0 or 1. In terms of the $Q^t \Lambda Q$ eigen-value decomposition, this helps explain why we think of *P* and *M* as projection matricies.

The Hypothesis test $H_0: \beta_j = b_j$ yields the following **T-test**:

$$t = \frac{\widehat{\beta}_j - b_j}{\sqrt{s^2 \left((X^t X)_{jj}^{-1} \right)}}$$
$$= \frac{\widehat{\beta}_j - b_j}{\text{S.E.}(\widehat{\beta}_j)}$$
$$\sim t_{n-p}$$

The Hypothesis test $H_0: D\beta = d$ for a full rank k by p matrix D yields the following **F-test**:

$$F = \frac{(\text{SSR}_R - \text{SSR}_U)/k}{\text{SSR}_U/(n-p)}$$

Where we let SSR_U be the sum of squared residuals of the unrestricted model $(r^t r)$ and SSR_R be the sum of squared residuals of the restricted model (where the sum of squares is minimzed subject to $D\beta = d$).

F-TEST CONFIDENCE REGION

ASA FLIGHT DATA