
Lecture 17
Intro to Lasso Regression
11 November 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612

Notes

– problem set 5 posted; due today

Goals for today

– introduction to lasso regression
– the subdifferential
– basics of the lars algorithm

Lasso Regression

Two lectures ago, I introduced the ridge estimator:

β̂λ = argmin
b

{
||y− Xb||22 + λ||b||22

}
Notice that for any λ > 0 there exists an sλ equal to ||β̂λ||22 where:

β̂λ = argmin
b

{
||y− Xb||22, s.t. ||b||22 ≤ sλ

}
This is the dual form of the optimization problem (essentially, the
opposite of using Lagrangian multipliers).

Lasso regression replaces the ℓ2 penalty with an ℓ1 penalty, and
looks deceptively similar to the ridge regression:

β̂λ = argmin
b

{
||y− Xb||22 + λ||b||1

}
Where the ℓ1-norm is defined as the sum of the absolute values of
the vector’s components:

||β||1 =
∑
i

|βi|

Similarly, for any λ > 0 there exists an sλ equal to ||β̂λ||1 where:

β̂λ = argmin
b

{
||y− Xb||22, s.t. ||b||1 ≤ sλ

}

The change in the norm of the penalty may seem like only a minor
difference, however the behavior of the ℓ1-norm is significantly
different than that of the ℓ2-norm.

A classic illustration, with p = 2 and using the dual form of the
estimators, shows exactly how this comes about.

I think of there being three major difference between ridge and
lasso:

1. the sharp, non-differentiable corners of the ℓ1-ball produce
parsimonious models for sufficiently large values of λ

2. the lack of rotational invariance limits the use of the singular
value theory that is so useful in unpenalized and ridge
regression

3. the lasso lacks an analytic solution, making both computation
and theoretical results more difficult

At the start of this semester, most of you had already worked with
multivariate regression, and many had even seen ridge, PCR, and
lasso regression.

By looking at these techniques at a deeper level with the help of
matrix analysis you have (hopefully) seen that there is a substantial
amount of nuance that is not immediately obvious.

The lasso is very much the same (in that there is significant depth
beyond what you would see in a first pass), but the lack of
differentiability and rotational invariance make most matrix
methods insufficient. Instead we will be looking to convex analysis
for tools of study to use in the remainder of the semester.

In slight reverse of the other techniques, we are going to study the
lasso in the following order:

1. computation
2. application
3. theory

With additional computational considerations to follow, time
permitting.

Ordinary least squares and ridge regression have what are called
analytic solutions, we can write down an explicit formula for what
the estimators are.

Generalized linear models, on the other hand, have only numerical
solutions with iterative methods. We have algorithm that, when run
sufficiently long enough should yield a solution with a reasonable
accuracy.

The lasso falls somewhere in-between these two cases, as it has a
direct numerical solution. We cannot write out an explicit analytic
form, but the algorithm is not iterative and would yield the exact
solution given a machine with infinite precision.

The subdifferential

The lasso solution does not have a derivative for any point where βj
is equal to zero. We instead use the concept of a subdifferential.

Let h be a convex function. The subdifferential at point x0 in the
domain of h is equal to the set:

∂(h)(x0) =
{
c ∈ R s.t. c ≤ h(x)− h(x0)

x− x0
∀ x ∈ Dom(h)

}
Less formally, it is the set of all slopes which are tangent to the
function at the point x0.

For example, the subdifferential of the absolute value function is

∂(| · |)(x) =

−1, x < 0
[−1, 1], x = 0
1, x > 0

An illustration of elements of the subdifferential for a more complex
convex function:

As shown in the figure, the subdifferential can be generalized to
higher dimensions as follows:

∂(h)(x0) =
{
g ∈ Rp s.t. h(x0) ≥ h(x) + gt(x− x0) ∀ x ∈ Dom(h)

}

We will use three properties of the subdifferential of a convex
function h:

1. the gradient ∇(h) exists at the point x0 if and only if ∂(h)(x0)
is equal to a single value, which is equal to ∇(h)(x0)

2. for every point x0, the set ∇(h)(x0) is a nonempty closed
interval [a, b]

3. the point x0 is a global minimum of h if and only if the
subdifferential contains zero; in other words, 0 ∈ ∂(h)(x0)

Least angle regression

The algorithm for solving the exact form of the lasso comes from

Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert
Tibshirani. “Least angle regression.” The Annals of Statistics
32, no. 2 (2004): 407-499.

Today, I will sketch out how the algorithm works in the simple case
where XtX is the identity matrix. Problem set 6 illustrates how this
works in the more general case.

The lasso equation is a convex function, so let us try to calculate the
subdifferential and determine what solution β give us ∂(h)(β) that
contain 0.

To simplify matters, assume that XtX is equal to the identity matrix.
We will also add a factor of 2 to the penalty, so that it because
2λ||β||1.

The lasso equation, in our simpler case, is given by:

f(b) = ||y− Xb||22 + 2λ||b||1
= yty+ btb− 2ytXb+ 2λ||b||1

We know that the gradient of the front terms is just 2b− 2Xty, and
the subdifferential of the ℓ1 norm is equal to λ times that of the
absolute value function.

The j-th component of the subdifferential is then given by:

∂(h)(bj) =

2bj − 2xtjy+ 2λ, bj > 0

[−2λ, 2λ]− 2xtjy, bj = 0

2bj − 2xtjy− 2λ, bj < 0

So what would make these equal to zero for all j?

If bj is greater than zero, we need the following to hold:

2bj − 2xtjy+ 2λ = 0

bj = xtjy− λ

So bj is a linear function of λ, with an intercept of xtjy and a slope of
−λ. However this only holds when:

xtjy− λ > 0

xtjy > λ

So, for all λ between xtjy and 0. So clearly bj can only be positive if
xtjy is positive.

What if bj is less than zero? We instead need the following:

2bj − 2xtjy− 2λ = 0

bj = xtjy+ λ

Whenever:

xtjy+ λ < 0

xtjy < −λ

−xtjy > λ

As λ > 0, therefore, bj is only negative if xtjy is negative.

We can combine these two conditions together, by saying that
whenever λ < |xtjy| we have:

bj = xtjy− sign(xtjy) · λ

What about the third case in the subdifferential? If bj is equal to
zero, we need:

0 ∈ [−2λ, 2λ]− 2xtjy

Which implies that both

−2λ− 2xtjy < 0

λ > −xtjy

and

2λ− 2xtjy > 0

λ > xtjy

hold.

This can again be simplified into one equation, which here yields
λ > |xtjy| whenever bj is equal to zero.

Now, amazingly, we have a full solution to the lasso equation in the
case where XtX is the identity matrix:

β̂λ
j =

{
0, λ > |xtjy|
xtjy− sign(xtjy) · λ, λ ≤ |xtjy|

Let’s construct a test dataset, with XtX equal to the identity matrix.
One easy way is with the poly function, which produces an
orthogonal polynomial basis of an arbitrarily high order.

> n <- 1000
> p <- 5
> X <- poly(seq(0,1,length.out=n),degree=p)
> round(t(X) %*% X,6)
1 2 3 4 5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
> beta <- c(1,0,1,0,0)
> y <- X %*% beta + rnorm(n,sd=0.3)

Notice that the regression vector has only 2 non-zero components.

Now we start by constructing a sequence of λ values to which we
want to fit the model. We know the non-zero solutions lie between 0
and ||Xty||∞, so we’ll pick twice that range:

> Xty <- t(X) %*% y
> lambda <- seq(0,max(abs(Xty))*2,length.out=1e5)

The first element of β̂ can then be simply calculated according to our
formula.

> j <- 1
> beta <- Xty[j] - lambda * sign(Xty[j])
> beta[lambda > abs(Xty[j])] <- 0

We then plot this as a path of solutions with respect to λ:

> plot(lambda, beta, type='l')

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

lambda

be
ta

_1

Putting this logic into a loop and saving the results as a matrix,
yields the full set of coordinates.

> beta <- matrix(0,nrow=length(lambda),ncol=p)
> for (j in 1:p) {
+ beta[,j] <- Xty[j] - lambda * sign(Xty[j])
+ beta[lambda > abs(Xty[j]),j] <- 0
> }

These can, similarly, be plotted as a function of λ.

●

0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5
1.

0

lambda

be
ta

1

2

3

4

5

Recall that only elements 1 and 3 of the original problem were
actually non-zero. Look what happens if we set λ to 0.5.

●

0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5
1.

0

lambda

be
ta

1

2

3

4

5

●

●

The lars package, written by the authors of the aforementioned
paper, provides a method for calculating this without having to write
the code manually (and obviously also handles cases with arbitrary
XtX).

> library(lars)
> out <- lars(X,y,normalize=FALSE,intercept=FALSE)
> out

Call:
lars(x = X, y = y, normalize = FALSE, intercept = FALSE)
R-squared: 0.021
Sequence of LASSO moves:

3 1 5 2 4
Var 3 1 5 2 4
Step 1 2 3 4 5

> plot(out)

* *

*

*

*
*

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * * *

*
*

*

*

*

*

*
*

* * * * *
*

* * *

*

*
*

LASSO

5
4

2
1

3

0 1 2 3 4 5

Turning on the trace feature of lars shows the path like logic of the
algorithm:

> out <- lars(X,y,normalize=FALSE,intercept=FALSE,
+ trace=TRUE)
LASSO sequence
Computing X'X
LARS Step 1 : Variable 3 added
LARS Step 2 : Variable 1 added
LARS Step 3 : Variable 5 added
LARS Step 4 : Variable 2 added
LARS Step 5 : Variable 4 added
Computing residuals, RSS etc

What is so much more difficult about the general case? Consider the
function to be minimized:

f(b) = ||y− Xb||22 + 2λ||b||1
= yty+ btXtXb− 2ytXb+ 2λ||b||1

The subdifferential is still fairly easy to calculate, with the j-th
component equal to:

∂(h)(b) =
{

(2XtXb− 2Xty)j + 2 · sign(bj) · λ, bj ̸= 0

(2XtXb− 2Xty)j + 2 · [−λ, λ], bj = 0

But consider how hard this is to solve directly now that the p
equations are no longer decoupled given that (1) we need to consider
all permutations of the whether bj is zero and (2) we have a system
of, possibly, multivalued equations.

The good news is that once we find some β̂λ such that ∂(h)(β̂λ)
contains the zero vector we are done. No need to calculate or prove
anything; a global minimum is assured.

For example, consider any λ greater than |Xty|∞ (the maximum
absolute value). I know that β̂λ will be equal to all zeros, and can
show this very quickly as the subdifferential becomes:

∂(h)(b) = 2xtjy+ 2 · [−λ, λ], bj = 0

Which contains zero because:

−λ < xtjy

and

λ > −xtjy.

Now, assume that the values of Xty are unique, positive, and ordered
from highest to lower values. These conditions simply keep the
notation easier, with all but the uniqueness being easy to account for
with a few more conditional statements.

It turns out that for λ between xt1y and xt2y, we get the same solution
as in the uncorrelated case (with the addition of scaling factor as
xt1x1 may not be 1):

β̂λ =
1

xt1x1
·

xt1y− λ

0
...
0

This can be shown fairly easily by plugging into the subdifferential
equation.

For j not equal to 1, we will have:

0 ∈ 2xtjy+ 2 · [−λ, λ]

Because λ > xtjy, as the inner products are sorted from largest to
smallest.

For the j = 1 case, we have:

0 =
(
2XtXb− 2Xty

)
j + 2 · sign(bj) · λ

0 = 2xt1x1b1 − 2xt1y+ λ

b1 =
1

xt1x1

(
xt1y− λ

)
Which finishes the result.

For values with xt3y ≤ λ ≤ xt2y, the solution for β̂ linear with
non-zero elements in just the first 2 components.

The details from there on out are what is covered on problem set 6.

As a final example, we’ll construct some correlated data with a
sparse model and show what the lars path solution looks like:

> n <- 1000
> p <- 25
> X <- matrix(rnorm(p*n),ncol=p)
> X <- X*0.8 + X[,1]*0.2
> beta <- sample(0:1,p,replace=TRUE,prob=c(9,1))
> which(beta != 0)
[1] 14 20
> y <- X %*% beta + rnorm(n,sd=0.3)

** ***************** ** *****

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

** ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** *******

***************** ** *****

** ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** *******

***************** ** *****

** ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** ******* ***************** ** *****

LASSO

15
20

0 2 12 20

