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Class Notes

– Midterm II - Posted this afternoon, due next Monday
– Problem Set 7 - Posted Wed., due December 11th (grace period

through the 16th)



Types of bounds



Recall that the lasso regression replaces the ℓ2 penalty with an ℓ1
penalty, and looks deceptively similar to the ridge regression:

β̂λ = argmin
b

{
||y− Xb||22 + λ||b||1

}
Where the ℓ1-norm is defined as the sum of the absolute values of
the vector’s components:

||β||1 =
∑
i

|βi|



There are three types of errors that we commonly are concerned
with in lasso regression. The prediction loss:

||X(β − β̂)||22

Parameter estimation:

||β − β̂||22

And model selection:

P
{
supp(β) = supp(β̂)

}



The type of results we want to establish may look different than you
are used to seeing in more introductory courses. What we will want
to be able to construct is a set A such that:

PA = 1− ϵ

For some small ϵ > 0, where we have bounds such as

||X(β − β̂)||22 ≤ δ

Conditioned on being in event A.

Today I’ll establish bounds on all three for a simple case where XtX
is the identity matrix and bounds on the first in the general case of
an arbitrary X matrix.



Simple case



Simple case

Let’s consider the simple case where XtX is equal to the identity
matrix.

We know that the lasso solution can be written as (Lecture 17):

β̂λ
j =

{
0, λ > 2 · |xtjy|
xtjy− sign(xtjy) · λ, λ ≤ 2 · |xtjy|



Define the set A such that λ bounds all of the correlations of X with
the noise vector ϵ: {

2||ϵtX||∞ ≤ λ
}

We will develop a general result later showing what the probability
of A occurring is.



We see that for any j:

2 · |xtjy| = 2 · |xtj(Xβ + ϵ)|
= 2 · |(βj + xtjϵ)|

If βj is equal to 0, then on A:

2 · |xtjy| = 2 · |xtjϵ|
≤ λ

And therefore β̂j will also be set exactly to zero.



What about j such that βj is not equal to 0? Then on A:

2 · |xtjy| = 2 · |xtj(Xβ + ϵ)|
= 2 · |βj + xtjϵ|
≥ 2 · |βj| − 2 · |xtjϵ|
≥ 2 · |βj| − λ

We then have that as long as the following holds:

λ ≤ 2 · |βj| − λ

λ ≤ |βj|

β̂j will be non-zero.



Therefore, on A the estimator β̂λ finds the correct support of β if:

2||Xϵ||22 ≤ λ ≤ min
j,βj ̸=0

|βj|

As one would expect, this forces there to be no particularly small
elements βj, as otherwise we could not differentiate between that
and 0.



To establish a bound on the estimation error, we need a bit more
notation. Let S = {j : βj ̸= 0} and s be the size of the set S. Also, let
vS be the vector v which has components not in S set to zero.

Further, let:

β̂oracle = (Xt
SXS)

−1Xt
Sy

That is, the ordinary least squares estimator that knows that the
correct support of β is S.



Now, notice that onA, the estimator β̂λ will be zero on Sc. Therefore:

||β − β̂||2 = ||βS − β̂S||2
= ||βS − β̂oracle + β̂oracle − β̂S||2
≤ ||βS − β̂oracle||2 + ||β̂oracle − β̂S||2

= ||βS − β̂oracle||2 +
√∑

j∈S
(xtjy− sign(xtjy)λ− xtjy)2

= ||βS − β̂oracle||2 +
√∑

j∈S
(sign(xtjy)λ)2

= ||βS − β̂oracle||2 + λ
√
s

So the cost of not knowing S is an extra factor of λ
√
s in the

prediction error.



This result is a type of oracle inequality, which relates the error of
not knowing some quantity to the error that can be attained when
the quantity is known.

In the lasso literature, this almost always refers to comparing a
penalized estimator on X to ordinary least squares fit on the set S.



Now, how far off will the prediction of β be? Notice that:

||X(β − β̂)||2 =
√

(β − β̂)tXtX(β − β̂)

=

√
(β − β̂)t(β − β̂)

= ||β − β̂||2

So we simultaneously established a prediction and estimation bound
for the simple lasso regression.



So now on the set Â we have bounds on all three quantities of
interest.

Notice that none of our bounds so far depend on n, p, or σ2, which
may seem quite odd. These are actually bound up in the choice of λ
and the scale of X (which we set to be 1).



Prediction error:general case



We want to establish some result about the general lasso solution.
We don’t have an analytic form anymore, so where to begin?

Let’s start with the one relationship we know to be true between β̂
(which I will call b to simplify the slides) and β:

||y− Xb||22 + λ||b||1 ≤ ||y− Xβ||22 + λ||β||1



By expanding the ℓ2-norm and writing y as Xβ + ϵ, the right-hand
side can be written as:

||y− Xβ||22 + λ||β||1 = yty+ βtXtXβ − 2ytXβ + λ||β||1
= yty+ βtXtXβ − 2βtXtXβ − 2ϵtXβ + λ||β||1
= yty− βtXtXβ − 2ϵtXβ + λ||β||1



Similarly, the left hand side simply becomes:

||y− Xb||22 + λ||b||1 = yty+ btXtXb− 2ytXb+ λ||b||1
= yty+ btXtXb− 2βtXtXb− 2ϵtXb+ λ||b||1



Canceling the yty on both sides and putting similar terms on each
side of the inequality, this yields:

btXtXb− 2βtXtXb− 2ϵtXb+ λ||b||1 ≤ −βtXtXβ − 2ϵtXβ + λ||β||1
btXtXb− 2βtXtXb+ βtXtXβ ≤ 2ϵtX(b− β) + λ||β||1 − λ||b||1

The left hand side can be written as an inner product, and we now
have a basic inequality with three terms:

||X(β − b)||22 ≤ 2ϵtX(b− β) + λ · (||β||1 − ||b||1)



We see that this decomposes nicely into three distinct terms:

||X(β − b)||22 ≤ 2ϵtX(b− β) + λ · (||β||1 − ||b||1)

These are the the loss to be minimized, the empirical part, and the
penalty term.



Bound on inner product utv

Let u and v be arbitrary vectors. Notice that:

|utv| =

∣∣∣∣∣∑
i

uivi

∣∣∣∣∣
≤

∑
i

|uivi|

≤
∑
i

|max
i
(ui)vi|

= |max
i
(ui)| ·

∑
i

|vi|

= ||u||∞ · ||v||1

This is a special case of Hölder’s inequality.



We will use this trick to bound the empirical part of our inequality:

2|ϵtX(b− β)| ≤ 2||ϵtX||∞ · ||b− β||1

We will then use the same definition of A:

A =
{
2||ϵtX||∞ ≤ λ

}
On this set, the random part is on the same order of magnitude as
the penalty part. We will return in a bit to talk about what would
make this quantity small.



On the set A, we have:

||X(β − b)||22 ≤ 2ϵtX(b− β) + λ · (||β||1 − ||b||1)
≤ ||2ϵtX||∞ · ||b− β||1 + λ · (||β||1 − ||b||1)
≤ λ||b− β||1 + λ · (||β||1 − ||b||1)
≤ λ · {||b− β||1 + ||β||1 − ||b||1}

And using the inequality ||β||+ ||b|| ≥ ||β − b||, we then have:

||X(β − b)||22 ≤ 2λ||β||1



So, it seems that picking a smaller λ yields a tighter bound.
However, the probability of being on A decreases as λ decreases.

There is ultimately a trade off to be made, and we will see that it is
possible to parameterize λ in a nice way to show-off the various
bounds.



Bounds on empiricalprocess



Now, let’s consider when the event A occurs. We will assume that
the columns of Xj have a norm of 1.

Start by setting zj equal to ϵtXj. These are distributed (not
necessarily independent) as N (0, σ2).



To bound these probabilities, recall this result on the maximum of p
observations from identically distributed normal random variables:

E
[
max

j
|zj|

]
≤ σ

√
2 log(2p)



Using the Markov inequality, we get for any a > 0:

P
[
max

j
|zj| ≥ a/2

]
≤

Emaxj |zj|
a/2

≤
σ
√

8 log(2p)
a

Now, for simplicity, set a = A ·
√

8 log(2p)σ2 for any A > 1. Then
PA = 1− A−1 whenever

λ ≥ A ·
√

8 log(2p)σ2



Summary andconsistency



So far, I have been solving the following optimization problem:

β̂λ = argmin
b

{
||y− Xb||22 + λ||b||1

}
It will be useful now to re-scale the problem.



Up until now we have assumed that XtX has 1’s on the diagonal. A
more natural assumption is that it was n’s on the diagonal. Let
X′ =

√
n · X and β′ = n−1/2β. Then, the new criterion becomes:

||y− X′b′||22 + λ
√
n · ||b′||1

||y− X′b′||22 + λ′ · ||b′||1

So, therefore we can solve this re-scaled problem by simply dividing
all of the λ parameters by

√
n.



So we now can put all of this in a single theorem.

Theorem For some A > 1 and all λ > A ·
√

8n−1 log(2p)σ2, we
have with probability 1− A−1:

||X(β − b)||22/n ≤ 2
λ√
n
||β||1



How do we get consistency out of this? We need both of these
things to go to zero as n goes to infinity:

A−1 → 0

A ·
√

8 log(2p)σ2

n
||β||1 → 0

Notice that as long as:√
8 log(2p)σ2

n
||β||1 → 0

We can set A to decay very slowly, such as A−1 = n−0.01.



So, assuming that σ2 and the size of the true β stay fixed, we have
consistency of the lasso estimator as long as pn is dominated by en.



Simulations


