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Class Notes

– Midterm II - Available now, due next Monday
– Problem Set 7 - Available now, due December 11th (grace

period through the 16th)



Last time



Last class, we started investigating the theory of the lasso estimator.

For the case of XtX equal to the identity matrix, we were able to
quickly establish bounds on the prediction error, estimation of β,
and the reconstruction of the support of β.

For an arbitrary X matrix we were able to calculate a bound on
||X(β̂ − β)||22.

Today’s goal is to establish a bound on ||β̂ − β||22



The basic starting point from last time was the following
decomposition, which had no assumptions beyond linearity of the
true model:

||X(β − b)||22 ≤ 2ϵtX(b− β) + λ · (||β||1 − ||b||1)

Where can think of this decomposition as the loss to be minimized,
the empirical part, and the penalty term.



I then defined the set

A =
{
2||ϵtX||∞ ≤ λ

}
And showed that for any A > 1 we have PA ≥ 1− A−1 whenever

λ ≥ A ·
√

8 log(2p)σ2.



Today we will motivate a stronger assumption on the model and use
these two results to establish bounds on the prediction of β.

Also, it will be helpful to write the set A as being parameterized by
the value of λ0:

A(λ0) =
{
2||ϵtX||∞ ≤ λ0

}



Bounds on estimationerror



We already know that on A(λ0) and with λ > 2 · λ0, we have:

||X(b− β)||22 + λ · ||b||1 ≤ 2ϵtX(b− β) + λ · ||β||1
≤ λ0||b− β||1 + λ · ||β||1

Now, multiplying by two gives:

2||X(b− β)||22 + 2λ · ||b||1 ≤ λ||b− β||1 + 2λ · ||β||1



Recall that we defined the notation: S = {j : βj ̸= 0}, s is the size of
the set S, and vS is the vector v which has components not in S set to
zero.



Notice that:

||b||1 = ||bS||1 + ||bSc ||1
≥ ||β||1 − ||bS − β||1 + ||bSc ||1

Using the (reverse) triangle inequality and the fact that βSc is zero by
definition.



Similarly, we have:

||b− β||1 = ||bS − βS||1 + ||bSc ||1

Where clearly βS is redundant, but useful to keep the notation
straight.



Plugging these in, we now get:

2||X(b− β)||22+2λ · ||βS||1 − 2λ · ||bS − β||1 + 2λ · ||bSc ||1
≤ λ||b− β||1 + λ · ||bS − βS||1 + 2λ · ||bSc ||1

Which cancels out as:

2||X(b− β)||22 + λ||bSc ||1 ≤ 3 · λ · ||bS − βS||1



This result now actually gives two sub-results, as all three terms are
positive and therefore each component of the left hand side is
individually bounded by the right hand side.

In particular, we have:

||bSc ||1 ≤ 3 · ||bS − βS||1

Which implies that the amount of error in b can not be too highly
concentrated on Sc.



The other sub-result gives:

2||X(b− β)||22 ≤ 3λ · ||bS − βS||1

If σmin is the minimum singular value of X, then the left hand side
can be bounded below by:

2σ2
min||b− β||22 ≤ 3λ · ||bS − βS||1

Using the Cauchy-Schwarz inequality, this becomes:

2σ2
min||b− β||22 ≤ 3λ ·

√
s||bS − βS||2

||b− β||2 ≤
3λ

√
s

2σ2
min

Which gives a bound on the error of estimating β, which is exactly
what we wanted to establish.



Why is this not sufficient for us? Well, in the high dimensional case
p > n, we will always have σmin equal to 0.

We can get around this problem by defining a modified version of
the minimum eigenvector (or squared singular value) by only
considering b− β such that:

||bSc ||1 ≤ 3 · ||bS − βS||1



The (minimum) restricted eigenvalue ϕS on the set S is defined as:

ϕS = argmin
v ∈ VS

||Xb||2
||b||2

Where:

VS = {v ∈ Rp s.t. ||vSc ||1 ≤ 3 · ||vS||1}



Because we do not know S, it is impossible to calculate ϕS in
practice. In theoretical work, often one considers the restricted
eigenvalue ϕ defined as the smallest ϕS for all sets S with size
bounded by some predefined s0.



Now, we can bound the following using our prior result:

2||X(b− β)||22 + λ · ||b− β||1
= 2||X(b− β)||22 + λ · ||bS − βS||1 + λ · ||bSc ||1
= 4λ · ||bS − βS||1

Using Cauchy-Schartz again, we can change the ℓ1-norm to an
ℓ2-norm at the cost of a factor of

√
s:

2||X(b− β)||22 + λ · ||b− β||1 ≤ 4λ ·
√
s · ||bS − βS||2

Finally, we now use the restricted eigenvalue ϕ to convert from β
space to Xβ space:

2||X(b− β)||22 + λ · ||b− β||1 ≤ 4λ ·
√
s · ||X(bS − βS)||2/ϕ



I am now going to use an inequality trick that is often useful in
theoretical statistics derivations. For any u and v, notice that
4uv ≤ u2 + 4v2.

For a proof, notice that it is trivially true at zero and negative values
of u and v. Then look at the derivatives and notice that the right
hand side grows faster than the left hand side in the directions of
both u and v.



Setting u = ||X(bS − βS)||2, we then have:

2||X(b− β)||22 + λ · ||b− β||1 ≤ ||X(bS − βS)||2 + 4λ2 · s · /ϕ2

≤ ||X(b− β)||22 + 4λ2 · s · /ϕ2

And when canceling one factor of ||X(b− β)||2:

||X(b− β)||22 + λ · ||b− β||1 ≤ 4λ2 · s · /ϕ2

Which holds on the entire set A(λ0).



This establishes two simultaneous bounds:

||X(b− β)||22 ≤ 4λ2 · s · /ϕ2

||b− β||1 ≤ 4λ · s · /ϕ2

Though the first is slightly less satisfying than our result in last class
as it relies on ϕ2, though it no longer requires the norm of β.



Asymptotic analysis



As before, we can convert a more natural re-scaled problem by
dividing all of the λ parameters by

√
n

Also, remember that for some A > 1, we have PA(λ0) ≥ 1− A−1

for all λ > A ·
√

16n−1 log(2p)σ2.



Therefore, we have:

||b− β||1 ≤ 4λ · s · /ϕ2

≤ 8 · Aσ2/ϕ2 · s
2
n log(2pn)

n

Which is the same result as from the Bickel, Ritov, Tsybakov paper.



To establish consistency of the estimator under constant noise and
restricted eigenvalues ϕ2, we need the following limit to go to zero:

lim
n→∞

s2n log(2pn)
n

= 0

Which can happen with a number of different scalings, such as a
constant number of non-zero terms but an exponential number of
non-zero terms. Or, sn growing like n1/3 and pn growing linearly
with sn.



Some (personal) closing thoughts on the application of the lasso
theory to data analysis:

1. The theory is useful for establishing a rough rule of thumb for
how large pn and sn can be to have a reasonable chance of
reconstructing β or Xβ

2. The theory also helps guide where to start looking for the
optimal λ

3. We still generally need some form of cross validation however,
as the theoretical values tend to overestimate λ in practice; we
also do not know σ2 and in theory need to use an over-estimate
for the convergence results to hold

4. Bounds on ||X(β − β̂)||22 are nice to have, however the
theoretical bounds on ||β − β̂||22 are difficult to use in practice
due to the near-impossible to calculate restricted eigenvalue
assumption

5. I have always been skeptical of the asymptotic results for the
same reason; ϕ likely depends on n, pn and sn in complex ways
that are not accounted for



For our next (and last) week we will:

1. use the lasso to encode more complex forms of linear sparsity
(e.g., outlier detection and the fused lasso)

2. give an alternative approach to solving for the lasso solution at
a particular value of λ


