Solutions to Selected Problems from Homework \# 1

Jason Matthew Klusowski

3. For a given sample size n, consider observing y_{i} from a sample linear model without an intercept, with normal i.i.d. errors and $x_{i}=i / n$. For $\hat{\beta}_{M L E}$ show that:
(a) Without calculating an analytic form of the variance, argue that $\hat{\beta}_{M L E}$ is a consistent estimator of β.
(c) Assume that σ is equal to 2 and known. Find the smallest n such that the z-test for the null hypothesis $H_{0}: \beta=0$ will yield a p-value less than 0.05 when the true β is greater than 1 .

Solution. There are a few ways of doing this, but they all essentially boil down to showing that

$$
\sum_{i=1}^{n} x_{i}=(1 / n)^{2} \sum_{i=1}^{n} i^{2} \rightarrow+\infty .
$$

That is, $\sum_{i=1}^{n} i^{2}$ converges to infinity faster than n^{2}. One method is to use the following inequality:

$$
\sum_{i=1}^{n} i^{2} \geq \int_{0}^{n} x^{2} d x=n^{3} / 3
$$

which is apparent if one uses a geometric interpretation of sums and integrals.
Another method considers only those i in the sum $\sum_{i=1}^{n} x_{i}^{2}$ for which $x_{i} \geq 1 / 2$. There are at least $n / 2$ of these and so the sum can be lower bounded by $n^{3} / 8$.
(c) Under the null hypothesis of $\beta=0, \frac{\hat{\beta}}{S E(\hat{\beta})}$ is normally distributed with zero mean and unit variance. Therefore, we seek the smallest n such that

$$
f_{n}\left(\beta_{1}\right):=\mathbb{P}\left(\left.\left|\frac{\hat{\beta}}{S E(\hat{\beta})}\right| \geq 1.96 \right\rvert\, \beta=\beta_{1}\right) \geq 0.8,
$$

where β_{1} is any number contained in the interval $[1,+\infty)$. Note here that $f_{n}(0)=0.05$.
Therefore,

$$
\begin{aligned}
\mathbb{P}\left(\left.\left|\frac{\hat{\beta}}{S E(\hat{\beta})}\right| \geq 1.96 \right\rvert\, \beta=\beta_{1}\right)= & \mathbb{P}\left(\left.\frac{\hat{\beta}}{S E(\hat{\beta})} \geq 1.96 \right\rvert\, \beta=\beta_{1}\right)+\mathbb{P}\left(\left.\frac{\hat{\beta}}{S E(\hat{\beta})} \leq-1.96 \right\rvert\, \beta=\beta_{1}\right) \\
= & \mathbb{P}\left(\left.\frac{\hat{\beta}-\beta_{1}}{S E(\hat{\beta})} \geq 1.96-\frac{\beta_{1}}{S E(\hat{\beta})} \right\rvert\, \beta=\beta_{1}\right) \\
& +\mathbb{P}\left(\left.\frac{\hat{\beta}-\beta_{1}}{S E(\hat{\beta})} \leq-1.96-\frac{\beta_{1}}{S E(\hat{\beta})} \right\rvert\, \beta=\beta_{1}\right) \\
= & \mathbb{P}\left(Z \geq 1.96-\frac{\beta_{1}}{S E(\hat{\beta})}\right)+\mathbb{P}\left(Z \leq-1.96-\frac{\beta_{1}}{S E(\hat{\beta})}\right) .
\end{aligned}
$$

The last line follows from the fact that if $\beta=\beta_{1}$, then $\frac{\hat{\beta}-\beta_{1}}{S E(\hat{\beta})}$ follows a normal distribution with mean zero and unit variance. We denote by Z a random variable with this distribution.
By taking derivatives with respect to β_{1} and using symmetry properties of the standard normal density, one can show that the expression

$$
\mathbb{P}\left(Z \geq 1.96-\frac{\beta_{1}}{S E(\hat{\beta})}\right)+\mathbb{P}\left(Z \leq-1.96-\frac{\beta_{1}}{S E(\hat{\beta})}\right)
$$

is increasing for $\beta_{1}>0$, and thus

$$
\begin{aligned}
f_{n}(1) & =\mathbb{P}\left(Z \geq 1.96-\frac{1}{S E(\hat{\beta})}\right)+\mathbb{P}\left(Z \leq-1.96-\frac{1}{S E(\hat{\beta})}\right) \\
& \leq f_{n}\left(\beta_{1}\right),
\end{aligned}
$$

for β_{1} in $[1,+\infty)$.
Using the expression for $S E(\hat{\beta})$ obtained in part (b) and the prescribed value for σ, we can write $f_{n}(1)$ explicitly in terms of n. It is enough to find the smallest n for which $f_{n}(1) \geq 0.8$. The best way to accomplish this is to write a program in R that iterates over values of n and stops when $f_{n}(1) \geq 0.8$. We find that n should be at least 93 .

