Solutions to Selected Problems from Homework # 1

Jason Matthew Klusowski

3. For a given sample size n, consider observing y_i from a sample linear model without an intercept, with normal i.i.d. errors and $x_i = i/n$. For $\hat{\beta}_{MLE}$ show that:

(a) Without calculating an analytic form of the variance, argue that $\hat{\beta}_{MLE}$ is a consistent estimator of β .

(c) Assume that σ is equal to 2 and known. Find the smallest *n* such that the *z*-test for the null hypothesis $H_0: \beta = 0$ will yield a *p*-value less than 0.05 when the true β is greater than 1.

Solution. There are a few ways of doing this, but they all essentially boil down to showing that

$$\sum_{i=1}^{n} x_i = (1/n)^2 \sum_{i=1}^{n} i^2 \to +\infty.$$

That is, $\sum_{i=1}^{n} i^2$ converges to infinity faster than n^2 . One method is to use the following inequality:

$$\sum_{i=1}^{n} i^2 \ge \int_0^n x^2 dx = n^3/3$$

which is apparent if one uses a geometric interpretation of sums and integrals.

Another method considers only those *i* in the sum $\sum_{i=1}^{n} x_i^2$ for which $x_i \ge 1/2$. There are at least n/2 of these and so the sum can be lower bounded by $n^3/8$.

(c) Under the null hypothesis of $\beta = 0$, $\frac{\beta}{SE(\hat{\beta})}$ is normally distributed with zero mean and unit variance. Therefore, we seek the smallest n such that

$$f_n(\beta_1) := \mathbb{P}\left(\left| \frac{\hat{\beta}}{SE(\hat{\beta})} \right| \ge 1.96 \left| \beta = \beta_1 \right) \ge 0.8,$$

where β_1 is any number contained in the interval $[1, +\infty)$. Note here that $f_n(0) = 0.05$. Therefore,

$$\begin{split} \mathbb{P}\left(\left|\frac{\hat{\beta}}{SE(\hat{\beta})}\right| \geq 1.96 \left|\beta = \beta_1\right\right) &= \mathbb{P}\left(\frac{\hat{\beta}}{SE(\hat{\beta})} \geq 1.96 \left|\beta = \beta_1\right\right) + \mathbb{P}\left(\frac{\hat{\beta}}{SE(\hat{\beta})} \leq -1.96 \left|\beta = \beta_1\right\right) \\ &= \mathbb{P}\left(\frac{\hat{\beta} - \beta_1}{SE(\hat{\beta})} \geq 1.96 - \frac{\beta_1}{SE(\hat{\beta})} \left|\beta = \beta_1\right\right) \\ &+ \mathbb{P}\left(\frac{\hat{\beta} - \beta_1}{SE(\hat{\beta})} \leq -1.96 - \frac{\beta_1}{SE(\hat{\beta})} \left|\beta = \beta_1\right\right) \\ &= \mathbb{P}\left(Z \geq 1.96 - \frac{\beta_1}{SE(\hat{\beta})}\right) + \mathbb{P}\left(Z \leq -1.96 - \frac{\beta_1}{SE(\hat{\beta})}\right). \end{split}$$

The last line follows from the fact that if $\beta = \beta_1$, then $\frac{\hat{\beta} - \beta_1}{SE(\hat{\beta})}$ follows a normal distribution with mean zero and unit variance. We denote by Z a random variable with this distribution.

By taking derivatives with respect to β_1 and using symmetry properties of the standard normal density, one can show that the expression

$$\mathbb{P}\left(Z \ge 1.96 - \frac{\beta_1}{SE(\hat{\beta})}\right) + \mathbb{P}\left(Z \le -1.96 - \frac{\beta_1}{SE(\hat{\beta})}\right)$$

is increasing for $\beta_1 > 0$, and thus

$$f_n(1) = \mathbb{P}\left(Z \ge 1.96 - \frac{1}{SE(\hat{\beta})}\right) + \mathbb{P}\left(Z \le -1.96 - \frac{1}{SE(\hat{\beta})}\right)$$
$$\le f_n(\beta_1),$$

for β_1 in $[1, +\infty)$.

Using the expression for $SE(\hat{\beta})$ obtained in part (b) and the prescribed value for σ , we can write $f_n(1)$ explicitly in terms of n. It is enough to find the smallest n for which $f_n(1) \ge 0.8$. The best way to accomplish this is to write a program in **R** that iterates over values of n and stops when $f_n(1) \ge 0.8$. We find that n should be at least 93.