
Solutions to Selected Problems from Homework # 2

Jason Matthew Klusowski

1. Consider the case of a simple linear regression (no intercept) with a random design; specifically
assume that {xi}ni=1 and {εi}ni=1 are each collections of independent normally distributed random
variables with mean zero and variance 1 and σ2, respectively. Furthermore, assume that E(εi|X) = 0

and yi = xiβ + εi, for i = 1, 2, . . . , n. Define β̃ =
1

n

∑n
i=1 xiyi.

(a) Give both an argument and counterargument for using β̃ in lie of β̂.

(b) Calculate E(β̃|X). Is this estimator unbiased when conditions on X? Is it unbiased when
calculating the unconditional expectation?

(c) Compute the unconditional variance of β̃ and compare to the unconditional variance of β̂.
Which estimator which you rather use?

Solution. (a) The estimator β̂ is equal to

1

n

∑n
i=1 xiyi

1

n

∑n
i=1 x

2
i

.

Note that the quantity
1

n

∑n
i=1 x

2
i is an estimate of the variance of a normally distributed random

variable having mean zero and variance 1. However, since we know this variance is 1, it seems better

to use the actual value rather than an estimated one. So we can replace
1

n

∑n
i=1 x

2
i with 1, in which

case we obtain β̂.

On the other hand, even though both estimators are unbiased (see part (b)) and linear in y, β̂ has
the attractive property of minimizing the mean squared error, conditional on X.

(b) Observe that
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E(β̃|X) = E(
1

n

n∑
i=1

xiyi|X)

=
1

n

n∑
i=1

E(xiyi|X)

=
1

n

n∑
i=1

xiE(yi|X)

=
1

n

n∑
i=1

xiE(xiβ + εi|X)

=
1

n

n∑
i=1

xi[E(xiβ|X) + E(εi|X)]

=
1

n

n∑
i=1

xiE(xiβ|X)

=
β

n

n∑
i=1

x2i .

Clearly, E(β̃|X) isn’t unbiased. But since
1

n

∑n
i=1 x

2
i is an unbiased estimator of 1 and E(β̃) =

EE(β̃|X), it follows that E(β̃) = β.

(c) We will use the fact that V(β̃) = E(β̃ − β)2 = EE((β̃ − β)2|X).

Now,

E((β̃ − β)2|X) = E((β̃ − E(β̃|X) + E(β̃|X)− β)2|X)

= E((β̃ − E(β̃|X))2|X) + E((β̃|X)− β)2|X)+

+ 2E((β̃ + E(β̃|X))(E(β̃|X)− β)|X)

= E((β̃ − E(β̃|X))2|X) + E((E(β̃|X)− β)2|X)+

2(E(β̃|X)− β)E(β̃ − E(β̃|X)|X)

= E((β̃ − E(β̃|X))2|X) + (E(β̃|X)− β)2

Note that R =
n

β
E(β̃|X) =

∑n
i=1 x

2
i follows a chi-squared distribution with n degrees of freedom.

This distribution has mean n and variance 2n. Therefore,

E(E(β̃|X)− β)2 =
β2

n2
E(R− n)2

=
β2

n2
V(R)

=
2β2

n
.

Also, observe that
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E((β̃ − E(β̃|X))2|X) = E

( 1

n

n∑
i=1

(xiyi − βx2i )

)2

|X

 .

Conditional on X, the collection {xiyi − βx2i }ni=1 is uncorrelated and has mean zero. Therefore,

E

( 1

n

n∑
i=1

(xiyi − βx2i )

)2

|X

 =
1

n2

n∑
i=1

E(xiyi − βx2i )2|X)

=
1

n2

n∑
i=1

E(ε2i |X)

Thus, EE((β̃ − E(β̃|X))2|X) =
σ2

n
. This shows that V(β̃) =

σ2 + 2β2

n
.

To find the variance of β̂, we use the fact that E((β̂ − β)2|X) =
σ2∑n
i=1 x

2
i

. This means that

V(β̂) = E(β̂ − β)2

= EE((β̂ − β)2|X)

= σ2E
(

1∑n
i=1 x

2
i

)
.

Note that
1∑n

i=1 x
2
i

has an inverse-chi-squared distribution with mean
1

n− 2
. Therefore V(β̂) =

σ2

n− 2
.

For n sufficiently large, V(β̂) < V(β̃). If we choose to measure the efficacy of an estimator in terms
of its variability, it seems better to use β̂ to estimate β.
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