Solutions to Selected Problems from Homework \# 2

Jason Matthew Klusowski

1. Consider the case of a simple linear regression (no intercept) with a random design; specifically assume that $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ are each collections of independent normally distributed random variables with mean zero and variance 1 and σ^{2}, respectively. Furthermore, assume that $\mathbb{E}\left(\epsilon_{i} \mid X\right)=0$ and $y_{i}=x_{i} \beta+\epsilon_{i}$, for $i=1,2, \ldots, n$. Define $\tilde{\beta}=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}$.
(a) Give both an argument and counterargument for using $\tilde{\beta}$ in lie of $\hat{\beta}$.
(b) Calculate $\mathbb{E}(\tilde{\beta} \mid X)$. Is this estimator unbiased when conditions on X ? Is it unbiased when calculating the unconditional expectation?
(c) Compute the unconditional variance of $\tilde{\beta}$ and compare to the unconditional variance of $\hat{\beta}$. Which estimator which you rather use?
Solution. (a) The estimator $\hat{\beta}$ is equal to

$$
\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}}{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}} .
$$

Note that the quantity $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ is an estimate of the variance of a normally distributed random variable having mean zero and variance 1 . However, since we know this variance is 1 , it seems better to use the actual value rather than an estimated one. So we can replace $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ with 1 , in which case we obtain $\hat{\beta}$.
On the other hand, even though both estimators are unbiased (see part (b)) and linear in $y, \hat{\beta}$ has the attractive property of minimizing the mean squared error, conditional on X.
(b) Observe that

$$
\begin{aligned}
\mathbb{E}(\tilde{\beta} \mid X) & =\mathbb{E}\left(\left.\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \right\rvert\, X\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(x_{i} y_{i} \mid X\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{E}\left(y_{i} \mid X\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{E}\left(x_{i} \beta+\epsilon_{i} \mid X\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}\left[\mathbb{E}\left(x_{i} \beta \mid X\right)+\mathbb{E}\left(\epsilon_{i} \mid X\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{E}\left(x_{i} \beta \mid X\right) \\
& =\frac{\beta}{n} \sum_{i=1}^{n} x_{i}^{2} .
\end{aligned}
$$

Clearly, $\mathbb{E}(\tilde{\beta} \mid X)$ isn't unbiased. But since $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ is an unbiased estimator of 1 and $\mathbb{E}(\tilde{\beta})=$ $\mathbb{E} \mathbb{E}(\tilde{\beta} \mid X)$, it follows that $\mathbb{E}(\tilde{\beta})=\beta$.
(c) We will use the fact that $\mathbb{V}(\tilde{\beta})=\mathbb{E}(\tilde{\beta}-\beta)^{2}=\mathbb{E} \mathbb{E}\left((\tilde{\beta}-\beta)^{2} \mid X\right)$.

Now,

$$
\begin{aligned}
\mathbb{E}\left((\tilde{\beta}-\beta)^{2} \mid X\right)= & \mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X)+\mathbb{E}(\tilde{\beta} \mid X)-\beta)^{2} \mid X\right) \\
= & \left.\mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X))^{2} \mid X\right)+\mathbb{E}((\tilde{\beta} \mid X)-\beta)^{2} \mid X\right)+ \\
& +2 \mathbb{E}((\tilde{\beta}+\mathbb{E}(\tilde{\beta} \mid X))(\mathbb{E}(\tilde{\beta} \mid X)-\beta) \mid X) \\
= & \mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X))^{2} \mid X\right)+\mathbb{E}\left((\mathbb{E}(\tilde{\beta} \mid X)-\beta)^{2} \mid X\right)+ \\
& 2(\mathbb{E}(\tilde{\beta} \mid X)-\beta) \mathbb{E}(\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X) \mid X) \\
= & \mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X))^{2} \mid X\right)+(\mathbb{E}(\tilde{\beta} \mid X)-\beta)^{2}
\end{aligned}
$$

Note that $R=\frac{n}{\beta} \mathbb{E}(\tilde{\beta} \mid X)=\sum_{i=1}^{n} x_{i}^{2}$ follows a chi-squared distribution with n degrees of freedom. This distribution has mean n and variance $2 n$. Therefore,

$$
\begin{aligned}
\mathbb{E}(\mathbb{E}(\tilde{\beta} \mid X)-\beta)^{2} & =\frac{\beta^{2}}{n^{2}} \mathbb{E}(R-n)^{2} \\
& =\frac{\beta^{2}}{n^{2}} \mathbb{V}(R) \\
& =\frac{2 \beta^{2}}{n} .
\end{aligned}
$$

Also, observe that

$$
\mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X))^{2} \mid X\right)=\mathbb{E}\left(\left.\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i} y_{i}-\beta x_{i}^{2}\right)\right)^{2} \right\rvert\, X\right)
$$

Conditional on X, the collection $\left\{x_{i} y_{i}-\beta x_{i}^{2}\right\}_{i=1}^{n}$ is uncorrelated and has mean zero. Therefore,

$$
\begin{aligned}
\mathbb{E}\left(\left.\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i} y_{i}-\beta x_{i}^{2}\right)\right)^{2} \right\rvert\, X\right) & \left.\left.=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left(x_{i} y_{i}-\beta x_{i}^{2}\right)^{2} \right\rvert\, X\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}\left(\epsilon_{i}^{2} \mid X\right)
\end{aligned}
$$

Thus, $\mathbb{E} \mathbb{E}\left((\tilde{\beta}-\mathbb{E}(\tilde{\beta} \mid X))^{2} \mid X\right)=\frac{\sigma^{2}}{n}$. This shows that $\mathbb{V}(\tilde{\beta})=\frac{\sigma^{2}+2 \beta^{2}}{n}$.
To find the variance of $\hat{\beta}$, we use the fact that $\mathbb{E}\left((\hat{\beta}-\beta)^{2} \mid X\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$. This means that

$$
\begin{aligned}
\mathbb{V}(\hat{\beta}) & =\mathbb{E}(\hat{\beta}-\beta)^{2} \\
& =\mathbb{E} \mathbb{E}\left((\hat{\beta}-\beta)^{2} \mid X\right) \\
& =\sigma^{2} \mathbb{E}\left(\frac{1}{\sum_{i=1}^{n} x_{i}^{2}}\right) .
\end{aligned}
$$

Note that $\frac{1}{\sum_{i=1}^{n} x_{i}^{2}}$ has an inverse-chi-squared distribution with mean $\frac{1}{n-2}$. Therefore $\mathbb{V}(\hat{\beta})=$ $\frac{\sigma^{2}}{n-2}$.
For n sufficiently large, $\mathbb{V}(\hat{\beta})<\mathbb{V}(\tilde{\beta})$. If we choose to measure the efficacy of an estimator in terms of its variability, it seems better to use $\hat{\beta}$ to estimate β.

