Ultrahigh dimensional variable selection: Beyond the linear model

Jianqing Fan

Princeton University

With Richard Samworth and Yichao Wu; Rui Song

http://www.princeton.edu/~jqfan

May 16, 2009

500

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 1 / 43

▶ < Ξ >

- Introduction
- Large-scale screening
- Moderate-scale Selection
- Iterative feature selection
- Numerical Studies

500

Jianqing Fan (Princeton University)

Introduction

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

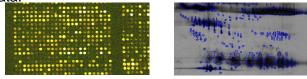
3 Yale University 3/43

ъ

イロト イロト イヨト

High-dim variable selection characterizes many contemporary statistical problems.

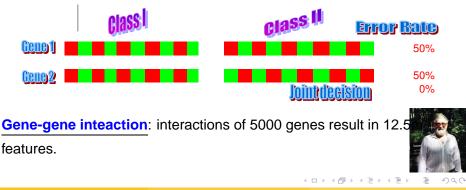
Bioinformatic: disease classification using microarray, proteomics, fMRI data.



- Document or text classification: E-mail spam.
- Association studies between phenotypes and SNPs.

Dimensionality grows rapidly with interactions

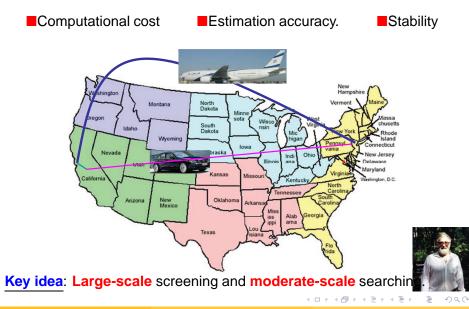
Portfolio selection and network modeling: 2,000 stocks involves over 2m unknown parameters in the covariance matrix.



- To construct as effective a method as possible to predict future observations.
- To gain insight into the relationship between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.

Bickel (2008) discussion of the SIS paper (JRSS-B).

Challenges with Ultrahigh Dimensionality



Jianqing Fan (Princeton University)

Yale University 7 / 43

Large-scale sreening

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 8 / 43

Э

<ロト < 同ト < 三ト

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009 such a method from empirical likelihood point of view.

Jianqing Fan (Princeton University)

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009 such a method from empirical likelihood point of view.

Jianqing Fan (Princeton University)

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009) such a method from empirical likelihood point of view.

San

イロト イロト イヨト

GLIM:
$$f_{Y}(y|X=x; heta) = \expig\{(y heta-b(heta))/\phi + c(y, \phi)ig\}$$
 with

canonial link : $b'^{-1}(\mu) = \theta = \mathbf{x}^T \beta$.

Objective: Find sparse β to minimize $Q(\beta) = \sum_{i=1}^{n} L(Y_i, \mathbf{x}_i^T \beta)$.

GLIM:
$$L(Y_i, \mathbf{x}_i^T \beta) = b(\mathbf{x}_i^T \beta) - Y_i \mathbf{x}_i^T \beta$$
.

Classification: $Y = \pm 1$. \bigstar SVM $L(Y_i, \mathbf{x}_i^T \beta) = (1 - Y_i \mathbf{x}_i^T \beta)_+$. \bigstar AdaBoost $L(Y_i, \mathbf{x}_i^T \beta) = \exp(-Y_i \mathbf{x}_i^T \beta)$. Robustness: $L(Y_i, \mathbf{x}_i^T \beta) = |Y_i - \mathbf{x}_i^T \beta|$.

Jianqing Fan (Princeton University)

イロト イロト イヨト イヨト

GLIM:
$$f_{Y}(y|X=x; heta) = \expig\{(y heta-b(heta))/\phi + c(y, \phi)ig\}$$
 with

canonial link :
$$b'^{-1}(\mu) = \theta = \mathbf{x}^T \beta$$
.

Objective: Find sparse β to minimize $Q(\beta) = \sum_{i=1}^{n} L(Y_i, \mathbf{x}_i^T \beta)$.

GLIM:
$$L(Y_i, \mathbf{x}_i^T \beta) = b(\mathbf{x}_i^T \beta) - Y_i \mathbf{x}_i^T \beta$$
.

Classification:
$$Y = \pm 1$$
.
 \bigstar SVM $L(Y_i, \mathbf{x}_i^T \beta) = (1 - Y_i \mathbf{x}_i^T \beta)_+$.
 \bigstar AdaBoost $L(Y_i, \mathbf{x}_i^T \beta) = \exp(-Y_i \mathbf{x}_i^T \beta)$.
Robustness: $L(Y_i, \mathbf{x}_i^T \beta) = |Y_i - \mathbf{x}_i^T \beta|$.

How to screen discrete variables (Genome-wide association)?

O they have sure screening property?

What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

Jianqing Fan (Princeton University)

High-dimensional variable selection

▶ < Ξ ▶</p>

Image: A matrix

- How to screen discrete variables (Genome-wide association)?
- O they have sure screening property?
- What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 11 / 43

▶ < ≣ ▶

- How to screen discrete variables (Genome-wide association)?
- O they have sure screening property?
- What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

Independence learning

Marginal utility: Letting $\hat{L}_0 = \min_{\beta_0} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0)$, define

$$\hat{L}_j = \hat{L}_0 - \min_{\beta_0,\beta_j} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0 + X_{ij}\beta_j)$$
 Wilks.

or $\hat{\beta}_{j}^{M}$ (Wald), assuming $EX_{j}^{2} = 1$.

Feature ranking: Select features w/ largest marginal utilities:

$$\widehat{\mathcal{M}}_{\mathbf{v}_n} = \{ j : \hat{L}_j \ge \mathbf{v}_n \}, \qquad \widehat{\mathcal{M}}_{\gamma_n}^w = \{ j : \hat{\beta}_j^M \ge \gamma_n \}$$

<u>Dim. reduction</u>: From $p_n = O(\exp(n^a))$ to $O(n^b)$:

Independence learning

Marginal utility: Letting $\hat{L}_0 = \min_{\beta_0} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0)$, define

$$\hat{L}_j = \hat{L}_0 - \min_{\beta_0, \beta_j} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0 + X_{ij}\beta_j)$$
 Wilks.

or $\hat{\beta}_{j}^{M}$ (Wald), assuming $EX_{j}^{2} = 1$.

Feature ranking: Select features w/ largest marginal utilities:

$$\widehat{\mathcal{M}}_{\mathbf{v}_n} = \{j : \hat{\mathcal{L}}_j \ge \mathbf{v}_n\}, \qquad \widehat{\mathcal{M}}_{\gamma_n}^w = \{j : \hat{\beta}_j^M \ge \gamma_n\}$$

<u>Dim. reduction</u>: From $p_n = O(\exp(n^a))$ to $O(n^b)$:

Jianqing Fan (Princeton University) Hig

Marginal utility:
$$L_j^{\star} = E\ell(Y, \beta_0^M) - \min E\ell(Y, \beta_0 + \beta_j X_j).$$

Likelihood ratio (Fan and Song, 09)

Theorem 1:
$$L_j^* = 0 \iff \operatorname{cov}(Y, X_j) = \operatorname{cov}(b'(\mathbf{X}^T \beta^*), X_j) = 0$$

 $\iff \beta_j^M = 0.$

For Gaussian covariates, conclusion holds if $|cov(\mathbf{X}^T \beta^*, X_j)| = 0$ independence.

500

Jianqing Fan (Princeton University)

<u>True model</u>: $\mathcal{M}_{\star} = \{j : \beta_{j}^{\star} \neq 0\}$, where $\beta^{\star} = \operatorname{argmin} EL(Y, \mathbf{X}^{T}\beta)$.

<u>Theorem 2</u>: If $|\operatorname{cov}(b'(\mathbf{X}^T\beta^*), X_j)| \ge c_1 n^{-\kappa}$ for $j \in \mathcal{M}_{\star}$, then

 $\min_{j\in \mathcal{M}_\star} |\beta_j^M| \geq c_1 n^{-\kappa}, \qquad \min_{j\in \mathcal{M}_\star} |L_j^\star| \geq c_2 n^{-2\kappa}.$

If $\{X_j, j \notin \mathcal{M}_{\star}\}$ is independent of $\{X_i, i \in \mathcal{M}_{\star}\}$, then $L_j^{\star} = 0$.

For Gaussian covariates, conclusion holds if

 $|\operatorname{cov}(X^T\beta^*,X_j)| \ge c_1 n^{-\kappa},$ min condition even for LS.

Sac

Jianqing Fan (Princeton University)

(日)

<u>True model</u>: $\mathcal{M}_{\star} = \{j : \beta_j^{\star} \neq 0\}$, where $\beta^{\star} = \operatorname{argmin} EL(Y, \mathbf{X}^T \beta)$.

<u>Theorem 2</u>: If $|\operatorname{cov}(b'(\mathbf{X}^T\beta^*), X_j)| \ge c_1 n^{-\kappa}$ for $j \in \mathcal{M}_{\star}$, then

$$\min_{j\in\mathcal{M}_\star}|\beta_j^M|\geq c_1n^{-\kappa},\qquad \min_{j\in\mathcal{M}_\star}|L_j^\star|\geq c_2n^{-2\kappa}.$$

If $\{X_j, j \notin \mathcal{M}_{\star}\}$ is independent of $\{X_i, i \in \mathcal{M}_{\star}\}$, then $L_j^{\star} = 0$.

For Gaussian covariates, conclusion holds if

 $|\operatorname{cov}(\mathbf{X}^{\mathsf{T}}\boldsymbol{\beta}^{\star},\mathbf{X}_{j})| \geq c_{1}n^{-\kappa},$ min condition even for LS.

イロト イタト イヨト イヨト

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

$$P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{v_n}\right) \to 1$$
 exponentially fast

No conditions on covariance matrix!

This is a SIS property w/ size controlled.

Note that L
_j - L^{*}_j = O(log p/n^{1/2}) and minimum signal O(n^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.

Screening using **Wald stat** $\hat{\beta}_j^M$ has SIS property.

イロト イロト イヨト イヨト

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

$$P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{v_n}\right) \to 1$$
 exponentially fast

No conditions on covariance matrix!

This is a SIS property w/ size controlled.

Note that
 *L*_j – *L*_j^{*} = O(log *p*/**n**^{1/2}) and minimum signal O(*n*^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.

Screening using **Wald stat** $\hat{\beta}_j^M$ has SIS property.

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

$$P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{V_n}\right) \to 1$$
 exponentially fast

No conditions on covariance matrix!

- This is a SIS property w/ size controlled.
- Note that
 *L*_j *L*_j^{*} = O(log *p*/n^{1/2}) and minimum signal O(n^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.
 Interface
- Screening using Wald stat $\hat{\beta}_j^M$ has SIS property.

イロト イロト イヨト イヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{ |\hat{\beta}_j^M| \ge \gamma_n \}.$$

• $P(\max_j |\hat{\beta}_j^M - \hat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\boldsymbol{\beta}^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\|^{2}) = O\{\lambda_{max}(\boldsymbol{\Sigma}) \ \boldsymbol{\beta}^{\star T}\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\} = O(\lambda_{max}(\boldsymbol{\Sigma})).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the **selected** model size.

200

Jianqing Fan (Princeton University)

イロト イタト イヨト イヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{|\widehat{\beta}_j^M| \ge \gamma_n\}.$$

• $P(\max_j |\widehat{\beta}_j^M - \widehat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\boldsymbol{\beta}^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\|^{2}) = O\{\lambda_{max}(\boldsymbol{\Sigma}) \ \boldsymbol{\beta}^{\star T}\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\} = O(\lambda_{max}(\boldsymbol{\Sigma})).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the **selected** model size.

200

Jianqing Fan (Princeton University)

イロト イポト イヨト イヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{|\widehat{\beta}_j^M| \ge \gamma_n\}.$$

• $P(\max_j |\widehat{\beta}_j^M - \widehat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\beta^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\Sigma\beta^{\star}\|^{2}) = \mathsf{O}\{\lambda_{max}(\Sigma) \ \beta^{\star T}\Sigma\beta^{\star}\} = \mathsf{O}(\lambda_{max}(\Sigma)).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the selection model size.

Jianqing Fan (Princeton University)

イロト イポト イヨト イヨト

Sampling Aspect: Controlling number of features

<u>**Theorem 4**</u>: If $\log p_n = o(n^{1-2\kappa})$,

$$\mathbf{P}[|\widehat{\mathcal{M}}_{v_n}| \leq \mathbf{O}\{\mathbf{n}^{\mathbf{2}\kappa}\lambda_{max}(\Sigma)\}] \to \mathbf{1}.$$

Establish
$$\|\mathbf{L}^{\star}\|^2 = O(\|\beta^M\|^2) = O(\|\Sigma\beta^{\star}\|^2).$$

The number of selected covariates depends on the population covariance. It is actually bounded by

 $\mathbf{O}(\gamma_{\mathbf{n}}^{-2} \| \Sigma \beta^{\star} \|^{2}) = \mathbf{O}\{\mathbf{n}^{2\kappa} \lambda_{\max}(\Sigma)\}.$

San

Jianqing Fan (Princeton University)

High-dimensional variable selection

イロト イロト イヨト イヨト

Sampling Aspect: Controlling number of features

<u>**Theorem 4**</u>: If $\log p_n = o(n^{1-2\kappa})$,

$$\mathbf{P}[|\widehat{\mathcal{M}}_{v_{n}}| \leq \mathbf{O}\{\mathbf{n}^{\mathbf{2}\kappa}\lambda_{max}(\Sigma)\}] \to \mathbf{1}.$$

Establish
$$\|\mathbf{L}^{\star}\|^2 = O(\|\beta^M\|^2) = O(\|\Sigma\beta^{\star}\|^2).$$

The number of selected covariates depends on the population covariance. It is actually bounded by

$$\mathbf{O}(\gamma_{\mathbf{n}}^{-2} \| \Sigma \beta^{\star} \|^{2}) = \mathbf{O}\{\mathbf{n}^{2\kappa} \lambda_{\max}(\Sigma)\}.$$

Jianqing Fan (Princeton University)

► < Ξ ► <</p>

Moderate-scale selection

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 18 / 43

1

• • = •

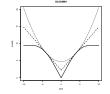
< D > < B

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1} \sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{i=1}^{d} p_{\lambda}(|\beta_i|).$ Simultaneously estimate coefs and choose variables.

Lasso (Tibshirani, 96), LARS (Efron et al., 04),

• SCAD (Fan & Li, 01, 06; Fan & Peng, 04)



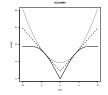
Jianging Fan (Princeton University)

High-dimensional variable selection

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1}\sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{i=1}^{d} p_{\lambda}(|\beta_i|).$ Simultaneously estimate coefs and choose variables.

- Lasso (Tibshirani, 96), LARS (Efron et al., 04), Adaptive Lasso(zou, 06), Approx sparse (Huang and Zhang, 06).
- SCAD (Fan & Li, 01, 06; Fan & Peng, 04) LQA (Fan & Li, 01), MM (Hunter & Li, 05), LA (Li and Zou, 07), and PLUS (Zhang, 07).



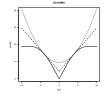
Jianqing Fan (Princeton University)

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1} \sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{j=1}^{d} p_{\lambda}(|\beta_j|)$. Simultaneously estimate coefs and choose variables.

- Lasso (Tibshirani, 96), LARS (Efron *et al.*, 04),
 Adaptive Lasso(zou, 06), Approx sparse (Huang and Zhang, 06).
- SCAD (Fan & Li, 01, 06; Fan & Peng, 04)
 LQA (Fan & Li, 01), MM (Hunter & Li, 05),
 LA (Li and Zou, 07), and PLUS (Zhang, 07).

Dantzig selector (Candes & Tao, 07)



 $\min_{\beta \in \mathbf{R}^{p_n}} \|\beta\|_1$ subject to $\|\mathbf{x}^T \mathbf{r}\|_{\infty} \leq \lambda_{p_n} \sigma$

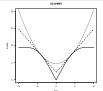
with $\lambda_{p_n} > 0$, $\mathbf{r} = \mathbf{y} - \mathbf{X}\beta$ and σ noise level. \approx Lasso (Bickel, et al. 2008)

Jianqing Fan (Princeton University)

Connections among penalized least-squares

PLS: $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \sum_{i=1}^{p_n} p_{\lambda}(|\beta_i|)$. **LLA**: with initial value β_0 (Zou & Li, 08),

nn



$$\|\mathbf{y} - \mathbf{X}\beta\|^2 + \sum_{i=1}^{m} \{ p_{\lambda}(|\beta_{i,0}|) + p_{\lambda}(|\beta_{i,0}|)'(|\beta_i| - |\beta_{i,0}|) \}.$$

Weighted
$$L_1$$
: $\|\mathbf{y} - \mathbf{X}\beta\|^2 + \sum_{i=1}^{p_n} \mathbf{w}(|\beta_{i,0}|)|\beta_i|$.
Fan and Li (01) stressed the unbiasedness.
Convergence: Objective function decreasing.

0

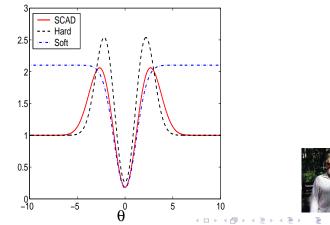
1

-

Risk Comparisons of popularized least-sqaures

Penalized least-squares: $(Z - \theta)^2 + p_{\lambda}(|\theta|)$ $R(\hat{\theta}, \theta) = E_{\theta}(\hat{\theta} - \theta)^2$ with $Z \sim N(\theta, 1)$

 $\lambda = 2$ for hard thresholding



Jianqing Fan (Princeton University)

Yale University 21 / 43

Iterative feature selection

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 22 / 43

=

< D > < B

Image: A 1 = 1

Drawback of Independence Screening

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_i\}_{i=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - \mathbf{J}\rho\mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors jointly unimportant but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - 0.2X_{p+1}) = J\rho.$$

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 23 / 43

Drawback of Independence Screening

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_j\}_{j=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - \mathbf{J}\rho \mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors **jointly unimportant** but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \dots + X_J - 0.2X_{\rho+1}) = J\rho.$$

<ロト <回ト < 回ト < 回

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_j\}_{j=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - \mathbf{J}\rho \mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors jointly unimportant but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathsf{J}+1}, X_1 + \cdots + X_J - 0.2X_{\rho+1}) = J\rho.$$

<ロト <回ト < 回ト < 回

- ■(Large-scale screening): Apply SIS to pick a set A₁;
 ■(Moderate-scale selection): Employ a penalized likelihood to select a subset M₁ of these indices.
- (Large-scale screening): Rank features according to the additional (conditional) contribution:

$$L_{j}^{(2)} = \min_{\beta_{0},\beta_{\mathcal{M}_{1}},\beta_{j}} n^{-1} \sum_{i=1}^{n} L(Y_{i},\beta_{0} + \mathbf{x}_{i,\mathcal{M}_{1}}^{\mathsf{T}} \beta_{\mathcal{M}_{1}} + X_{ij}\beta_{j}).$$

-Resulting in new feature sets \mathcal{A}_2 . -An improvement over Fan and Lv (08) who set $\beta_{\mathcal{M}_1} =$ previous fit.

ヘロト 人間 ト ヘヨト 人

- ■(Large-scale screening): Apply SIS to pick a set A₁;
 ■(Moderate-scale selection): Employ a penalized likelihood to select a subset M₁ of these indices.
- (Large-scale screening): Rank features according to the additional (conditional) contribution:

$$L_j^{(2)} = \min_{\beta_0, \beta_{\mathcal{M}_1}, \beta_j} n^{-1} \sum_{i=1}^n L(\mathbf{Y}_i, \beta_0 + \mathbf{x}_{i, \mathcal{M}_1}^{\mathsf{T}} \beta_{\mathcal{M}_1} + X_{ij} \beta_j).$$

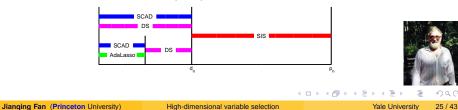
--Resulting in new feature sets \mathcal{A}_2 . --An improvement over Fan and Lv (08) who set $\beta_{\mathcal{M}_1} = \hat{\beta}_{\mathcal{M}_2}$ previous fit. (Moderate-scale selection): Minimize wrt $\beta_{\mathcal{M}_1}$, $\beta_{\mathcal{R}_2}$

$$\sum_{i=1}^{n} L(\mathbf{Y}_{i}, \beta_{0} + \mathbf{x}_{i,\mathcal{M}_{1}}^{T} \beta_{\mathcal{M}_{1}} + \mathbf{x}_{i,\mathcal{M}_{2}}^{T} \beta_{\mathcal{M}_{2}}) + \sum_{j \in \mathcal{M}_{1} \cup \mathcal{M}_{2}} p_{\lambda}(|\beta_{j}|).$$

-Resulting in \mathcal{M}_2

-Allow deletion, improvement over ISIS (Fan and Lv, 08).

Repeat Steps 1–3 until $|\mathcal{M}_\ell| = d$ (prescribed) or $\mathcal{M}_\ell = \mathcal{M}_{\ell-1}$.



<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

Theorem 1: With prescribed *d*,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{\binom{d}{r}^{2}}{\binom{p-|\mathcal{M}_{\star}|}{r}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

—Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ and $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Jianqing Fan (Princeton University)

<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

<u>Theorem 1</u>: With prescribed *d*,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{{\binom{d}{r}}^{2}}{\binom{p-|\mathcal{M}_{\star}|}{r}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

—Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ and $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Jianqing Fan (Princeton University)

<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

<u>Theorem 1</u>: With prescribed *d*,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{{\binom{d}{r}}^{2}}{\binom{p-|\mathcal{M}_{\star}|}{r}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ a $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Numerical Studies

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 27 / 43

-

トイヨト

< □ ト < @

<u>Contexts</u>: \bigstar Logistic \bigstar Poission $\bigstar L_1$ -reg; \bigstar Multiclass SVM

<u>Covariates</u>: p = 1000, $X_i \sim N(0, 1)$.

- **1** $X_1, \ldots, X_p \sim_{i.i.d.} N(0, 1)$
- So $\operatorname{corr}(X_i, X_4) = 1/\sqrt{2}$ and otherwise $\operatorname{corr}(X_i, X_j) = 1/2$.
- The same except $corr(X_i, X_{p+1}) = 0$.

Logistic regression, independent covariate

 $\beta_1 = 1.24, \, \beta_2 = -1.34, \, \beta_3 = -1.35, \, \beta_4 = -1.80, \, \beta_5 = -1.58, \, \beta_6 = -1.60.$

Bayes test error: 0.1368.

$$n = 400, N_{sim} = 100.$$

	SIS	ISIS	Var2-SIS	LASSO	NSC
$med(\ m{eta}-\widehat{m{eta}}\ _1)$	1.11	1.25	1.21	8.48	N/A
$med(\ eta - \widehat{eta}\ _2^2)$	0.49	0.52	0.52	1.70	N/A
True positive	0.99	0.84	0.91	1.00	0.34
Med. model size	6	6	6	94	3
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	237	247	243	164	N/A
AIC	250	260	256	353	N/A
BIC	278	285	282	725	N/A
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	272	273	273	319	N/A
0-1 test error	0.14	0.14	0.14	0.17	0.36
					→ < E > 1

Jianqing Fan (Princeton University)

Yale University 29 / 43

500

Logistic regression, difficult case — false negative

$$\beta_1 = 4, \ \beta_2 = 4, \ \beta_3 = 4, \ \beta_4 = -6\sqrt{2}, \ \mathrm{cov}(X_4, \mathbf{X}^{\mathsf{T}} \boldsymbol{\beta}^{\star}) = 0.$$

Signature variable: Bayes error: **0.107** and **.344** w/ and w/o X_4 .

Van-SIS	ISIS	Var2-ISIS	LASSO	NSC
20.1	1.94	1.85	21.6	N/A
9.41	1.05	0.98	9.11	N/A
0.00	1.00	1.00	0.00	0.21
16	4	4	91	16.5
307	187	187	127	N/A
334	196	195	311	N/A
386	212	212	672	N/A
344	204	204	259	N//
.193	.109	.109	0.141	0.377
	20.1 9.41 0.00 16 307 334 386 344	20.1 1.94 9.41 1.05 0.00 1.00 16 4 307 187 334 196 386 212 344 204	20.11.941.859.411.050.980.001.001.001644307187187334196195386212212344204204	20.11.941.8521.69.411.050.989.110.001.001.000.00164491307187187127334196195311386212212672344204204259

Jianqing Fan (Princeton University)

Yale University 30 / 43

Logistic, the most difficult case

$$\beta_1 = 4, \beta_2 = 4, \beta_3 = 4, \beta_4 = -6\sqrt{2}, \beta_{p+1} = 4/3, \operatorname{cov}(X_4, \mathbf{X}^T \beta^*) = 0.$$

Bayes error: 0.1040.

	Van-SIS	ISIS	Var2-ISIS	LASSO	NSC
$med(\ eta - \widehat{eta}\ _1)$	20.6	2.69	3.24	23.2	N/A
$med(\ eta - \widehat{eta}\ _2^2)$	9.46	1.36	1.59	9.11	N/A
True Positive	0.00	0.90	0.98	0.00	0.17
Med. model size	16	5	5	102	10
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	269	188	188	109	N/A
AIC	289	198	199	311	N/A
BIC	337	218	219	714	N/
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	361	225	226	276	N/
0-1 test error	.193	.112	.112	.146	.387
			< □ >		<

Jianqing Fan (Princeton University)

Yale University 31/43

Possion, independent covariates

$$\begin{split} \beta_0 = 5, \, \beta_1 = -0.54, \, \beta_2 = 0.53, \, \beta_3 = -0.50, \, \beta_4 = -0.49, \, \beta_5 = -0.41, \\ \beta_6 = 0.52, \qquad n = 200, \, \textit{N}_{sim} = 100. \end{split}$$

	SIS	ISIS	Var2-ISIS	LASSO
$med(\ eta-\widehat{eta}\ _1)$.070	.124	.122	.197
med($\ eta - \widehat{eta}\ _2^2$)	.023	.032	.033	.054
True Positive	.76	1.00	1.00	1.00
Med. model size	12	18	17	27
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1561	1502	1510	1534
AIC	1586	1538	1542	1587
BIC	1627	1597	1595	1674
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1558	1594	1589	1645

Jianqing Fan (Princeton University)

< □ ト < @

▶ < Ξ ▶</p>

Poisson Regression, difficult case

$$\beta_0 = 5, \beta_1 = 0.6, \beta_2 = 0.6, \beta_3 = 0.6, \beta_4 = -0.9\sqrt{2}$$

 $\operatorname{cov}(X_4, \mathbf{X}^T \beta^*) = 0.$

	ISIS	Var2-ISIS	LASSO
$med(\ eta - \widehat{eta}\ _1)$.271	.225	3.07
$med(\ eta - \widehat{eta}\ _2^2)$.072	.068	1.29
True positive	1.00	.97	0.00
Median final model size	18	16	174
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1494	1509	1364
AIC	1531	1541	1718
BIC	1590	1596	2293
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1629	1615	2213

Jianqing Fan (Princeton University)

3 33/43 Yale University

ト イヨト イヨト

< □ ト < @

Poisson Regression, the most difficult case

$$\beta_0 = 5, \ \beta_1 = 0.6, \ \beta_2 = 0.6, \ \beta_3 = 0.6, \ \beta_4 = -0.9\sqrt{2}, \ \beta_{p+1} = -0.15$$

 $\operatorname{cov}(X_4, \mathbf{X}^T \beta^*) = 0.$

	Van-ISIS	Var2-ISIS	LASSO
$med(\ eta - \widehat{eta}\ _1)$.254	.232	3.09
$med(\ eta - \widehat{eta}\ _2^2)$.068	.068	1.29
True positive	.97	.91	0.00
Median final model size	18	16	174
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1500	1516	1367
AIC	1536	1547	1715
BIC	1595	1600	2294
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1640	1631	2389

200

Jianqing Fan (Princeton University)

イロト 不得 とくほとくほう

Neuroblastoma Data (MAQC-II)

- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Neuroblastoma is a common paediatric solid cancer (15%)
- 3 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").

Jianqing Fan (Princeton University)

Yale University 35 / 43

イロト イロト イヨト

Neuroblastoma Data (MAQC-II)

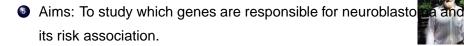
- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Neuroblastoma is a common paediatric solid cancer (15%)
- **③** 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").

San

Jianqing Fan (Princeton University)

Neuroblastoma Data (MAQC-II)

- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Neuroblastoma is a common paediatric solid cancer (15%)
- **③** 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").



イロト イロト イヨト

Results

Training set and endpoints:

- "3-y EFS": Random *n* = 125 subjects (25 "+" and 100 "-").
- **Gender**": Random 120 males and 50 females. Total: 246.

Testing set: The remainder are used as the testing set.

Object	Method	SIS	ISIS	var2-ISIS	LASSO	NSC	Total
3-y EFS	No. pred.	5	23	12	57	9413	10,707
	Test error	19	22	21	22	24	114
Gender	No. pred.	6	2	2	42	3	10,707
	Test error	4	4	4	5	4	126

San

トイヨトイ

Image: A matrix

Results

Training set and endpoints:

- "3-y EFS": Random *n* = 125 subjects (25 "+" and 100 "-").
- **Gender**": Random 120 males and 50 females. Total: 246.

Testing set: The remainder are used as the testing set.

Object	Method	SIS	ISIS	var2-ISIS	LASSO	NSC	Total
3-y EFS	No. pred.	5	23	12	57	9413	10,707
	Test error	19	22	21	22	24	114
Gender	No. pred.	6	2	2	42	3	10 707
	Test error	4	4	4	5	4	120
							7

I = 1

Multi-category Classification

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

3 37/43 Yale University

Э

I = 1

< □ ト < @

<u>Linear classifier</u>: argmax_k $f_k(\mathbf{x})$, where $f_k(\mathbf{x}) \equiv \beta_{0k} + \mathbf{x}^T \beta_k$.

Loss:
$$L(Y, \mathbf{f}(\mathbf{x}; \mathbf{B})) = \sum_{j \neq Y} [1 + f_j(\mathbf{x})]_+$$

Marginal utility of the *j*-feature (Lee et al, 2004; Liu, et al, 2007): $L_j = \min_{\mathbf{B}} \sum_{i=1}^{n} L(\mathbf{Y}_i, \mathbf{f}(X_{ij}, \mathbf{B})) + \frac{1}{2} \sum_k \beta_{jk}^2 \text{ (identifiability)}$

San

Jianqing Fan (Princeton University)

イロト イポト イヨト

Simulation Experiments

$$\begin{array}{l} \underline{\text{Design}}: \ & \tilde{X}_1, \dots, \tilde{X}_4 \ \text{U}[-\sqrt{3}, \sqrt{3}], \ \text{and} \ & \tilde{X}_5, \dots, \tilde{X}_p \sim N(0, 1). \\ \\ & \text{Case 1:} \ & X_j = \tilde{X}_j \ \text{for} \ j = 1, \dots, p \\ \\ & \text{Case 2:} \ & X_1 = \tilde{X}_1 - \sqrt{2} \tilde{X}_5, \ & X_2 = \tilde{X}_2 + \sqrt{2} \tilde{X}_5, \ & X_3 = \tilde{X}_3 - \sqrt{2} \tilde{X}_5, \\ & X_4 = \tilde{X}_4 + \sqrt{2} \tilde{X}_5, \\ & X_j = \sqrt{3} \tilde{X}_j \ \text{for} \ j = 5, \dots, p. \end{array}$$

Response: 4 categories $\square P(Y = k | \mathbf{\tilde{X}} = \mathbf{\tilde{x}}) \propto \exp\{f_k(\mathbf{\tilde{x}})\},\$ $f_1(\mathbf{\tilde{x}}) = -a\mathbf{\tilde{x}}_1 + a\mathbf{\tilde{x}}_4, f_2(\mathbf{\tilde{x}}) = a\mathbf{\tilde{x}}_1 - a\mathbf{\tilde{x}}_2,\$ $f_3(\mathbf{\tilde{x}}) = a\mathbf{\tilde{x}}_2 - a\mathbf{\tilde{x}}_3 \text{ and } f_4(\mathbf{\tilde{x}}) = a\mathbf{\tilde{x}}_3 - a\mathbf{\tilde{x}}_4 \text{ with } a = 5/\sqrt{3}.$

200

Simulation Experiments

$$\begin{array}{l} \underline{\text{Design}}: \ \tilde{X}_1, \dots, \tilde{X}_4 \ \text{U}[-\sqrt{3}, \sqrt{3}], \ \text{and} \ \tilde{X}_5, \dots, \tilde{X}_p \sim N(0, 1). \\\\ \text{Case 1:} \ X_j = \tilde{X}_j \ \text{for} \ j = 1, \dots, p \\\\ \text{Case 2:} \ X_1 = \tilde{X}_1 - \sqrt{2}\tilde{X}_5, \ X_2 = \tilde{X}_2 + \sqrt{2}\tilde{X}_5, \ X_3 = \tilde{X}_3 - \sqrt{2}\tilde{X}_5, \\\\ X_4 = \tilde{X}_4 + \sqrt{2}\tilde{X}_5, \\\\ X_j = \sqrt{3}\tilde{X}_j \ \text{for} \ j = 5, \dots, p. \end{array}$$

Response: 4 categories $\mathbf{P}(\mathbf{Y} = k | \mathbf{\widetilde{X}} = \mathbf{\widetilde{x}}) \propto \exp\{f_k(\mathbf{\widetilde{x}})\},\$ $f_1(\mathbf{\widetilde{x}}) = -a\tilde{x}_1 + a\tilde{x}_4, f_2(\mathbf{\widetilde{x}}) = a\tilde{x}_1 - a\tilde{x}_2,\$ $f_3(\mathbf{\widetilde{x}}) = a\tilde{x}_2 - a\tilde{x}_3 \text{ and } f_4(\mathbf{\widetilde{x}}) = a\tilde{x}_3 - a\tilde{x}_4 \text{ with } a = 5/\sqrt{3}.$

200

イロト イロト イヨト

	SIS	ISIS	Var2-ISIS	LASSO	NSC			
	Case 1							
True positive	1.00	1.00	1.00	0.00	0.68			
Median modal size	2.5	4	5	19	4			
0-1 test error	0.306	.301	.292	.330	.452			
Standard error	.007	.006	.006	.008	.021			
	Case 2							
True positive	.10	1.00	1.00	.33	.30			
Median modal size	4	11	9	54	9			
0-1 test error	.436	.304	.298	.430	.624			
Standard error	.007	.007	.006	.004	.008			

Test errors: based on 200*n* cases.

Jianqing Fan (Princeton University)

=

500

< □ ト < @

Classification: *neuroblastoma (NB),

★rhabdomyosarcoma (RMS), ★non-Hodgkin lymphoma (NHL),
 ★Ewing family of tumors (EWS).

Data: cDNA microarrays with 2308 genes (from 6567).

Training: 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS)

Testing: 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS)

Results: All methods have zero testing errors.

Method	ISIS	var2-ISIS	LASSO	NSC	
# selected genes	15	14	71	343	

Classification: *neuroblastoma (NB),

★rhabdomyosarcoma (RMS), ★non-Hodgkin lymphoma (NHL),
 ★Ewing family of tumors (EWS).

Data: cDNA microarrays with 2308 genes (from 6567).

- Training: 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS)
- Testing: 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS)

Results: All methods have zero testing errors.

Method	ISIS	var2-ISIS	LASSO	NSC	I LIRY CO.
# selected genes	15	14	71	343	

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Oemonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Demonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

High-dimensional variable selection

Propose large scale-screening and moderate-selection

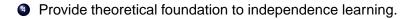
- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Oemonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Oemonstrate its utility via extensive simulation. Handle well the most difficulty case.



Jianqing Fan (Princeton University)

High-dimensional variable selection

The End

Happy Birthday!

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

э 43/43 Yale University

イロト 不得 とくほとくほう