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Office Hours



– Taylor Arnold:
– 24 Hillhouse, Office # 206
– Wednesdays 13:30-15:00, or by appointment
– Short one-on-one meetings (or small groups)

– Jason Klusowski:
– 24 Hillhouse, Main Classroom
– Tuesdays 19:00-20:30
– Group Q&A style



Website



http://euler.stat.yale.edu/~tba3/stat612

http://euler.stat.yale.edu/~tba3/stat612


Goals for today

1. calculate the MLE for simple linear regression
2. derive basic properties of the simple linear model MLE
3. introduction to R for simulations and data analysis



Simple Linear Models:
MLEs



Considering observing n samples from a simple linear model with
only a single unknown slope parameter β ∈ R,

yi = xiβ + ϵi, i = 1, . . . n.

This is, perhaps, the simpliest linear model.



For today, we will assume that the xi’s are fixed and known
quantities. This is called a fixed design, compared to a random
design.



The error terms are assumed to be independent and identically
distributed random variables with a normal density function:

ϵi ∼ N (0, σ2)

For some unknown variance σ2 > 0.
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The density function of a normally distributed random variable with
mean µ and variance σ2 is given by:

f(z) =
1√
2πσ2

× exp
{
− 1

2σ2
(z− µ)2

}
Conceptually, the front term is just a normalization to make the
density sum to 1. The important part is:

f(z) ∝ exp
{
− 1

2σ2
(z− µ)2

}



Which you have probably seen rewritten as:

f(z) ∝ exp

{
−0.5 ·

(
z− µ

σ

)2
}



Let’s look at the maximum likelihood function of our simple
regression model:

L(β, σ|x, y) =
∏
i

L(β, σ|xi, yi)

=
∏
i

1√
2πσ2

× exp
{
− 1

2σ2
(yi − βxi)2

}
Notice that the mean µ from the general case has been replaced by
βxi, which should be the mean of yi|xi.



We can bring the product up into the the exponent as a sum:

L(β, σ|x, y) =
∏
i

1√
2πσ2

× exp
{
− 1

2σ2
(yi − βxi)2

}

= (2πσ2)−n/2 × exp

{
− 1

2σ2
·
∑
i

(yi − βxi)2
}



Let’s highlight the slope parameter β:

L(β, σ|x, y) = (2πσ2)−n/2 × exp

{
− 1

2σ2
·
∑
i

(yi − βxi)2
}

What is the MLE for β?



Without resorting to any fancy math, we can see that:

β̂MLE = argmin
b∈R

{∑
i

(yi − b · xi)2
}

(1)

The least squares estimator.



A slightly more ‘mathy’ approach would be to calculate the the
negative log-likelihood:

−log {L(β, σ|x, y)} =
n
2
· log(2πσ2) +

1

2σ2

∑
i

(yi − βxi)2

Now the minimum of this corrisponds with the maximum likelihood
estimators.



Again, we notice that only the second term depends on β:

−log {L(β, σ|x, y)} =
n
2
· log(2πσ2) +

1

2σ2

∑
i

(yi − βxi)2

And we can again see without resorting to derivatives that the
maximum likelihood estimator is that one that minimizes the sum of
squares:

β̂mle = argmin
b∈R

{∑
i

(yi − bxi)2
}



It is possible to directly solve the least squares and obtain an analytic
solution to the simple linear regression model.

Taking the derivative of the sum of squares with respect to β we get:

∂

∂β

∑
i

(yi − βxi)2 = −2 ·
∑

i(yi − βxi) · xi

= −2 ·
∑

i(yixi − βx2i )



Setting the derivative equal to zero:

−2 ·
∑
i

(yixi − β̂x2i ) = 0∑
i

yixi = β̂
∑
i

x2i

β̂MLE =

∑
i yixi∑
i x

2
i

If you have seen the standard simple least squares solution (that is,
with an intercept) this should look familiar.



There are many ways of thinking about the maximum likelihood
estimator, one of which is as a weighted sum of the data points yi:

β̂ =

∑
i yixi∑
i x

2
i

=
∑
i

(
yi ·

xi∑
j x

2
j

)
=
∑
i

yiwi



One thing that the weighted form of the estimator makes obvious is
that the estimator is distributed normally:

β̂ ∼ N (·, ·)

As it is the sum of normally distributed variables (yi).



The mean of the estimator becomes

Eβ̂ =
∑
i

E(yiwi)

=
∑
i

wi · E(yi)

=
∑
i

wixiβ

= β ·
∑
i

xi
xi∑
j x

2
j

= β ·
∑

i x
2
i∑

j x
2
j

= β

And so we see the estimator is unbiased.



A normally distributed random variable is entirely characterised by
its mean and variance. So let us compute the variance of our MLE
estimator:

Vβ̂ =
∑
i

V(yiwi)

=
∑
i

w2
i V(yi)

=
∑
i

w2
i σ

2

= σ2 ·
∑

i x
2
i(∑

i x
2
i
)2

=
σ2∑
i x

2
i

If
∑

i x
2
i diverges, we will get a consistent estimator.



So we now know that the MLE is distributed as:

β̂ ∼ N (β,
σ2∑
i x

2
i
)

Does this make sense? What if xi = 1 for all i?



The MLE is weighting the data yi according to:

wi ∝ xi

Does this make sense? Why?



Simulations



We will be using the R program-
ming language for data analysis
and simulations

– Open source software,
available at:
https://www.r-project.org/

– An implementation of the S
programming language

– Designed for interactive data
analysis

– For pros/cons, check out the
many lengthy internet
articles & arguments



Things to know

– everything in R is an object
– indexing starts at 1
– no scalar type, numeric

objects are all vectors
– mostly functional language,

with some OO features



Gauß-Markov theorem



Many of the nice properties of the MLE estimator result from being
unbiased and normally distributed. A natural question is whether
another weighted sum of the data points yi would yield a better
estimator.



Formally, if we define:

β̂BLUE =
∑
i

yi · ai

What values of ai will minimise the variance of the estimator
assuming that we force it to be unbiased? BLUE stands for the Best
Linear Unbiased Estimator.



To force unbiaseness, we must have:

E
∑
i

yi · ai = β∑
i

xi · β · ai = β∑
i

xi · ai = 1



The variance is given by:

V
∑
i

yi · ai =
∑
i

a2i · Vyi

=
∑
i

a2i · σ2

As we cannot change σ2, minimising the variance amounts to
minimising

∑
i a

2
i .



So we have reduced the problem to solving the following:

argmin
a∈Rn

{∑
i

a2i s.t.
∑
i

aixi = 1

}



Lagrange multiplier

To solve the constrained problem:

argmin
x∈Rp

{f(x) s.t. g(x) = k}

Find stationary points (zero partial derivates) of:

L(x, λ) = f(x) + λ · (g(x)− k)

This will give the set of possible minimisers to the original
constrained problem.





For our problem we have:

L(a, λ) =
∑
i

a2i + λ ·

(
1−

∑
i

aixi

)

Which gives:

∂

∂ak
L(a, λ) = 2ak − λxk

2ak − λxk = 0

ak =
1

2
· λ · xk



The lambda derivative, which is just the constraint, shows the
specific value of λ that we need:

∂

∂λ
L(a, λ) = 1−

∑
i

aixi∑
i

aixi = 1

Plugging our previous version of ai:∑
i

1

2
· λ · xi · xi = 1

λ ·
∑
i

1

2
· x2i = 1

λ =
2∑
i x

2
i



Finally, plugging this back in:

ak =
1

2
· λ · xk

ak =
xk∑
i x

2
i

And this gives:

β̂BLUE =
∑
i

yi ·
xi∑
j x

2
j

= β̂MLE



The MLE estimator has the following properties under our
assumptions:

– unbiased
– consistent as long as

∑
i x

2
i diverges

– normally distributed
– is the BLUE estimator
– achieves the Cramér–Rao bound (problem set)
– has an analytic solution



The more common formulation of simple linear models includes an
unknown intercept term α. The basic model is then:

yi = α+ xiβ + ϵi, i = 1, . . . n.



The likelihood function for this revised model is almost the same as
before

L(β, σ|x, y) = (2πσ2)−n/2 × exp

{
− 1

2σ2
·
∑
i

(yi − α− xiβ)2
}

Clearly, by the same logic the MLE is given by minimizing the sum
of squared residuals.



Solving the least squares problem is only slightly more difficult
because now we have two parameters and need to use partial
derivatives to solve them. Otherwise the process is the same with a
few more terms floating around.



The estimators in this case become:

β̂ =

∑
i(yi − ȳ)(xi − x̄)∑

i(xi − x̄)2

α̂ = ȳ− β̂x̄

Where x̄ = n−1
∑

i xi and ȳ = n−1
∑

i yi.

Notice what happens when both means are zero.



All of these properties are maintained jointly for (α̂, β̂)

– unbiased
– consistent as long as

∑
i(xi − x̄)2 diverges

– normally distributed
– is the BLUE estimator
– achieves the Cramér–Rao bound
– has an analytic solution



Applications



Sir Francis Galton & Regression

– ‘Co-relations and their measurement,
chiefly from anthropometric data’
(1888).

– further ideas in Natural Inheritance
– sweet peas and regression to the mean
– extinction of surnames

(Galton–Watson stochastic processes)
– ‘Good and Bad Temper in English

Families’


