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Notes

1. Problem set 1 due start of next class
2. TA session tomorrow night
3. Two typo; 4(b) has hypothesis test for the intercept not the

slope, 3(c) required a tweak to the probability
4. Try to get a fresh copy of notes!



Goals for today

1. Galton’s heights data
2. Multivariate regression; normal equations
3. Model frames in R



Galton Heights
Application



Multivariate
Regression Models



The multivariate linear regression model is, on the surface, only a
slight generalization of the simple linear regression model:

yi = x1,iβ1 + x2,iβ2 + · · ·+ x1,pβp + ϵi

The statistical estimation problem now becomes one of estimating
the p components of the multivariate vector β.
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A sample can be re-written in terms of the vector xi (the vector of
covariates for a single observation):

yi = xtiβ + ϵi



In matrix notation, we can write the linear model simultaneously for
all observations:

y1
y2
...
yn

 =


x1,1 x2,1 · · · xp,1

x1,2
. . . xp,2

... . . . ...
x1,n x2,n · · · xp,n




β1
β2
...
βp

+


ϵ1
ϵ2
...
ϵn



Which can be compactly written as:

y = Xβ + ϵ

Note: we use the transpose for xtiβ but not for Xβ!
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For reference, note the following equation

y = Xβ + ϵ

Yields these dimensions:

y ∈ Rn

X ∈ Rn×p

β ∈ Rp

ϵ ∈ Rn



Vector Norms

When working with vectors and matricies, it will be helpful to
represent certain quantities by norms. The p-norm of a vector is
given by:

||x||pp =
n∑

i=1

|xi|p

In particular, the squared 2-norm yields the sum of squares of a
vector.
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Vector Norm Properties

The following properties are true of all vector norms, for a scalar α
and vectors v1 and v2.

||αv1|| = |α| · ||v1||
||v1 + v2|| ≤ ||v1||+ ||v2||



p-Norm Properties

p-norms have several additional properties that we will find useful.

Define q such that:

1

p
+

1

q
= 1

The q-norm and p-norm are then said to be dual to one another.

Notice that the 2-norm is dual to itself.
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p-Norm Properties, cont.

Hölder’s inequality then yields

|vt1v2| ≤ ||v1||p||v2||q

As a special case, the Cauchy–Schwarz inequality gives that:

|vt1v2|2 ≤ ||v1||22||v2||22
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p-Norm Properties, cont.

Finally, and of most importance for us today, note that the squared
2-norm is exactly equal to the self inner product:

||v1||22 = vt1v1



Least squares (again)

To estimate the least squares solution, which is again the MLE for
independent normal errors, we see that:

β̂ ∈ argmin
b∈Rp

{
||y− Xβ||22

}

Now using vector norms to denote the sum of squares.
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It will be helpful to re-write the sum of squares as:

||y− Xβ||22 = (y− Xβ)t(y− Xβ)

= (yt − βtXt)(y− Xβ)

= ytY− ytXβ − βtXty+ βtXtXβ

= ytY− 2ytXβ + βtXtXβ
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Normal Equations

In order to find the minimum of the sum of squares, we take the
gradient with respect to β and set it equal to zero.

Recall that, for a vector a and symmetric matrix A :

∇βatβ = a

∇ββ
tAβ = 2Aβ

This gives the gradient of the sum of squares as:

∇β||y− Xβ||22 = ∇β

(
yty− 2ytXβ + βtXtXβ

)
= 2XtXβ − 2Xty
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Setting this equal to zero gives a set of p equations called the normal
equations:

XtXβ̂ = Xty



Maximum or Minimum?

To determine whether the normal equations give a local minimum,
maximum, or saddle point, we can calculate the Hessian matrix.

This
is a p× p matrix giving every combination of the second partial
derivatives:

Hf(β) =


∂2f

∂β1∂β1

∂2f
∂β1∂β2

· · · ∂2f
∂β1∂βp

∂2f
∂β2∂β1

. . . ∂2f
∂β2∂βp

... . . . ...
∂2f

∂βp∂β1

∂2f
∂βp∂β2

· · · ∂2f
∂βp∂βp


If the Hessian is positive definite (xtHx ≥ 0) at a critical point, then
the critical point is a local minimum.
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Looking at the gradiant of the sum of squares:

∇β||y− Xβ||22 = 2XtXβ − 2Xty

We can see that the Hessian is simply:

Hβ||y− Xβ||22 = 2XtX

Why is this positive definite?

vt
(
2XtX

)
v = 2

(
vtXtXv

)
= 2||Xv||22
≥ 0



Looking at the gradiant of the sum of squares:

∇β||y− Xβ||22 = 2XtXβ − 2Xty

We can see that the Hessian is simply:

Hβ||y− Xβ||22 = 2XtX

Why is this positive definite?

vt
(
2XtX

)
v = 2

(
vtXtXv

)
= 2||Xv||22
≥ 0



Looking at the gradiant of the sum of squares:

∇β||y− Xβ||22 = 2XtXβ − 2Xty

We can see that the Hessian is simply:

Hβ||y− Xβ||22 = 2XtX

Why is this positive definite?

vt
(
2XtX

)
v = 2

(
vtXtXv

)
= 2||Xv||22
≥ 0



Looking at the gradiant of the sum of squares:

∇β||y− Xβ||22 = 2XtXβ − 2Xty

We can see that the Hessian is simply:

Hβ||y− Xβ||22 = 2XtX

Why is this positive definite?

vt
(
2XtX

)
v = 2

(
vtXtXv

)
= 2||Xv||22
≥ 0



Back to the normal equations themselves, notice that if the matrix
XtX is invertable, we can ‘solve’ the normal equations as:

XtXβ̂ = Xty

β̂ = (XtX)−1Xty

This is not a good way to solve the normal equations numerically,
but for deriving theoretical results about the least squares estimator
this form will be very useful.
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Matricies and Model
Frames in R


