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Notes

1. Problem set 1 due start of next class
2. TA session tomorrow night

3. Two typo; 4(b) has hypothesis test for the intercept not the
slope, 3(c) required a tweak to the probability

4. Try to get a fresh copy of notes!



Goals for today

1. Galton’s heights data
2. Multivariate regression; normal equations

3. Model frames in R



GALTON HEIGHTS
APPLICATION



MULTIVARIATE
REGRESSION MODELS



The multivariate linear regression model is, on the surface, only a
slight generalization of the simple linear regression model:

Vi = x1,i81 + x2,i2 + - -+ x1,,0, + €



The multivariate linear regression model is, on the surface, only a
slight generalization of the simple linear regression model:

Vi = x1,i81 + x2,i2 + - -+ x1,,0, + €

The statistical estimation problem now becomes one of estimating
the p components of the multivariate vector f3.



A sample can be re-written in terms of the vector x; (the vector of
covariates for a single observation):

yi=xf + e



In matrix notation, we can write the linear model simultaneously for
all observations:

i R B1 €1

y2 X172 xP72 /82 + €2

In Xl,n X2n " Xpn ’Bp €n



In matrix notation, we can write the linear model simultaneously for
all observations:

i R B1 €1
Y2 X192 - Xp.2 I €2
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Which can be compactly written as:

y=X0+e



In matrix notation, we can write the linear model simultaneously for
all observations:

i R B1 €1
Y2 X192 - Xp.2 I €2
X — b P7 . +

In Xl,n X2n " Xpn ’Bp €n

Which can be compactly written as:
y=XB+e

Note: we use the transpose for xi3 but not for X/!



For reference, note the following equation
y=XB+e
Yields these dimensions:

yeR”
X e R™P
B eRP
ec R?



Vector Norms

When working with vectors and matricies, it will be helpful to

represent certain quantities by norms. The p-norm of a vector is
given by:

n

5=l

i=1



Vector Norms

When working with vectors and matricies, it will be helpful to
represent certain quantities by norms. The p-norm of a vector is
given by:

n

5=l

i=1

In particular, the squared 2-norm yields the sum of squares of a
vector.



Vector Norm Properties

The following properties are true of all vector norms, for a scalar «
and vectors v; and vs.

avi|| = |af - [[v]]
[[v1 =+ vl | < [wi][ + [[ve]]



p-Norm Properties

p-norms have several additional properties that we will find useful.
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Define q such that:

4+ Z=1
p q

The g-norm and p-norm are then said to be dual to one another.



p-Norm Properties
p-norms have several additional properties that we will find useful.

Define q such that:

4+ Z=1
p q

The g-norm and p-norm are then said to be dual to one another.

Notice that the 2-norm is dual to itself.



p-Norm Properties, cont.
Holder’s inequality then yields

[viva| < [[vallpl|vllg



p-Norm Properties, cont.
Holder’s inequality then yields
[vival < [[vil]plvalg
As a special case, the Cauchy-Schwarz inequality gives that:

[vivaf? < [[val[3]]val 3



p-Norm Properties, cont.

Finally, and of most importance for us today, note that the squared
2-norm is exactly equal to the self inner product:

[lvi]3 = vivi



Least squares (again)

To estimate the least squares solution, which is again the MLE for
independent normal errors, we see that:

B € argmin {[|y — X5|3}
bER



Least squares (again)

To estimate the least squares solution, which is again the MLE for
independent normal errors, we see that:

B € argmin {[|y — X5|3}
bER

Now using vector norms to denote the sum of squares.



It will be helpful to re-write the sum of squares as:

ly=XBll5 = (v—XB)'(y— XB)



It will be helpful to re-write the sum of squares as:

ly—XBl; = (y—XB)(y— XB)
= (- BX)(y—XB)



It will be helpful to re-write the sum of squares as:

Iy — X813

(y—XB)'(y— XB)
(¥ = B'X")(y — XB)
V'Y — y'XB — B'X'y + B'X'XB



It will be helpful to re-write the sum of squares as:

Iy — X813

(y— XB)'(y — XB)

(¥ = BX)(y — XB)

V'Y —yXB - X'y + B'X'XB
y'Y —2y'XB + B'X'X3



Normal Equations

In order to find the minimum of the sum of squares, we take the
gradient with respect to § and set it equal to zero.

Recall that, for a vector a and symmetric matrix A :

Va8 =a
VsB'AB = 2A8



Normal Equations

In order to find the minimum of the sum of squares, we take the
gradient with respect to § and set it equal to zero.

Recall that, for a vector a and symmetric matrix A :

Va8 =a
VsB'AB = 2A8

This gives the gradient of the sum of squares as:

Villy — X815 = Vs (y'y — 29/X8 + 5'X'XB)
=2X'XB — 2X'y



Setting this equal to zero gives a set of p equations called the normal
equations:

X'XB = X'y



Maximum or Minimum?

To determine whether the normal equations give a local minimum,
maximum, or saddle point, we can calculate the Hessian matrix.



Maximum or Minimum?

To determine whether the normal equations give a local minimum,
maximum, or saddle point, we can calculate the Hessian matrix. This
is a p X p matrix giving every combination of the second partial
derivatives:

*f *f . *f
081081 0P1002 06108y
_of _Of
Hf(B) = 852'351 ) ' 352'3»317
0Bp0B1  9B,0B2 0Bp0Byp

If the Hessian is positive definite (xX'Hx > 0) at a critical point, then
the critical point is a local minimum.



Looking at the gradiant of the sum of squares:

Velly — X85 = 2X'XB — 2X"y
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Looking at the gradiant of the sum of squares:
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Looking at the gradiant of the sum of squares:
Vslly = XBlI3 = 2X'X5 — 2X'y
We can see that the Hessian is simply:
Hs|ly — XB|[3 = 2X'X
Why is this positive definite?

v (2XtX) v=2 (thth)
= 2||xvf3
>0



Back to the normal equations themselves, notice that if the matrix
X'X is invertable, we can ‘solve’ the normal equations as:

X'XB = X'y
B=(XX)"'X'y



Back to the normal equations themselves, notice that if the matrix
X'X is invertable, we can ‘solve’ the normal equations as:
X'XB = X'y
B=(XX) "Xy
This is not a good way to solve the normal equations numerically,

but for deriving theoretical results about the least squares estimator
this form will be very useful.



MATRICIES AND MODEL
FRAMES IN R



