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Goals for today

1. Geometry of least squares
2. Projection matrix P and annihilator matrix M
3. Multivariate Galton Heights



Geometry of Least
Sqares



Last time, we established that the least squares solution to the model:

y = Xβ + ϵ

Yields the solution:

β̂ = (XtX)−1Xty

As long as the matrix XtX is invertable.



Define the column space of the matrix X as:

R(X) = {θ : θ = Xb, b ∈ Rp} ⊂ Rn

This is the space spanned by the p columns of X sitting in
n-dimensional space.

Notice that the least squares problem can be re-written as:

θ̂ = argmin
θ

{
||y− θ||22, s.t θ ∈ R(X)

}
Where then β̂ = Xθ̂.
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Theorem 3.2 (p.g. 37, Rao & Toutenburg) The minimum, θ̂ is
attained when (y− θ̂) ⊥ R(X). In other words, (y− θ̂) is
perpendicular to all vectors in R.



Proof: Pick a θ̂ in R such that (y− θ̂) ⊥ R(X).

This implies that
Xt(y− θ̂) = 0. Then for all θ ∈ R:

||y− θ||22 = (y− θ̂ + θ̂ − θ)t(y− θ̂ + θ̂ − θ)

= (y− θ̂)t(y− θ̂) + (θ̂ − θ)t(θ̂ − θ) + 2(y− θ̂)t(θ̂ − θ)

= (y− θ̂)t(y− θ̂) + (θ̂ − θ)t(θ̂ − θ)

= ||y− θ̂||22 + ||θ̂ − θ||22
≥ ||y− θ̂||22

So, if such a θ̂ exists it attains the minimum. To see that it does,
write θ̂ = Xβ̂. Then:

Xt(y− θ̂) = Xt(y− Xβ̂)

= Xty− XtXβ̂
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To see that such a θ̂ does exist, write θ̂ = Xβ̂.

Then:

Xt(y− θ̂) = Xt(y− Xβ̂)

= Xty− XtXβ̂

= Xty− XtX(XtX)−1Xty

= Xty− Xty

= 0

And therefore our proposed θ̂ ∈ R(X).
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From this geometric interpretation of the least squares estimator, we
introduce an important matrix PX called the projection matrix.

PX = X(XtX)−1Xt

I’ll often drop the subscript as it should be understood that the
projection is on the data matrix X.



Notice that PX = X:

PX = X(XtX)−1XtX

= X

And Py gives the fitted values ŷ:

Py = X(XtX)−1XtXy

= Xβ̂

= θ̂

= ŷ

Do you see why the projection matrix is called the projection
matrix?
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The projection matrix is sometimes called the hat matrix. Any
thoughts as to why?



A closely related matrix to P is the annihilator matrix M:

M = In − P

It gets its name because MX = 0.
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The matrix P = X(XtX)−1Xt is clearly symmetric. It is also
idempotent:
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M is also symmetric

Mt = (In − P)t

= (In − Pt)

= M

And idempotent:

M2 = (In − P)2

= (In − P)(In − P)

= In − 2 ∗ P+ P2

= In − 2 ∗ P+ P

= In − P

= M

These properties both make sense given the geometric interpretation
of P and M as projections; into the column space of X and the
compliment of the columns space of X.
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These properties are quite useful. Notice how we can easily rewrite
the following for the residual vector r = y− Xβ̂:

r = y− Xβ̂

= y− Py

= (In − P)y

= My

= M(Xβ + ϵ)

= Mϵ

The matricies P and M not only help make the derivation easier, they
also give geometric insight into what we are doing.
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One particularly useful formula will be writing the squared residuals
as:

||r||22 = ||Mϵ||22
= ϵtMtMϵ

= ϵtMϵ

So the matrix M translates the sum of squared residuals into the sum
of the square errors, which are estimated by the residuals.
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So the matrix M translates the sum of squared residuals into the sum
of the square errors, which are estimated by the residuals.



Applications


