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Goals for today

1. Geometry of least squares
2. Projection matrix P and annihilator matrix M

3. Multivariate Galton Heights



(GEOMETRY OF LEAST
SQUARES



Last time, we established that the least squares solution to the model:
y=XB+e
Yields the solution:
B =(xx)""Xy

As long as the matrix X'X is invertable.



Define the column space of the matrix X as:
R(X)={6:0=Xb, be RP} CR"

This is the space spanned by the p columns of X sitting in
n-dimensional space.



Define the column space of the matrix X as:
R(X)={6:0=Xb, be RP} CR"

This is the space spanned by the p columns of X sitting in
n-dimensional space.

Notice that the least squares problem can be re-written as:

g = argmin {||y— 0|3, st 0€R(X)}
0

Where then B = X0.



Theorem 3.2 (p.g. 37, Rao & Toutenburg) The minimum, g is
attained when (y — 6) L R(X). In other words, (y — 0) is
perpendicular to all vectors in R.



Proof: Pick a f in R such that (y— 5) 1 R(X).
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Proof: Pick a f in R such that (y— 5) 1 R(X). This implies that
X'(y—0) =0. Then for all § € R:

ly=0l5 = =0+0-0 (y—0+0-0) )
= =0 (y-0)+@-0)0-0)+20y-0)0 -0)
= -0'-0+0O-0)@-0
= =013 +116 -0l
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Proof: Pick a f in R such that (y— 5) 1 R(X). This implies that
X'(y—0) =0. Then for all § € R:

ly—oli3 (y_§+§_f)t(y:§+§:9) R
= =0 (y=0)+0-0)(0-0)+2(y-0)"0-0)
= =0 (y-0)+0-0)0-0)
= |ly—0li3+ 16— 0l3
> [ly—6ll3

So, if s/1\1ch aE? exists it attains the minimum. To see that it does,
write # = X/3. Then:
X(y—0) =X(y—Xp)
= X'y — X'X3



To see that such a 8 does exist, write 0= XB .



To see that such a  does exist, write 6 = XB\ . Then:



To see that such a  does exist, write 6 = XB\ . Then:

X(y—0) = X(y—Xp)
= Xty—XtXB



To see that such a  does exist, write 6 = XB\ . Then:
X(y-0) = X(y—XB)

= Xy-X'X3

= X'y— XX(X'X)"'x'y



To see that such a  does exist, write 6 = XB . Then:

X(y-0) = X(y-XB)
= Xy-X'X3
= X'y— XX(X'X)"'x'y
- X'y— X'y
=0

And therefore our proposed 6 € R(X).



From this geometric interpretation of the least squares estimator, we
introduce an important matrix Py called the projection matrix.

Px = X(X'X)"1x!

I'll often drop the subscript as it should be understood that the
projection is on the data matrix X.



Notice that PX = X:

PX = X(X'X)~1x'x
=X



Notice that PX = X:

PX = X(X'X)~1x'x
=X

And Py gives the fitted values y:

Py = X(X'X)"1X'Xy
= XB

I
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Do you see why the projection matrix is called the projection
matrix?



Notice that PX = X:
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=X

And Py gives the fitted values y:

Py = X(X'X)"1X'Xy
= XB
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Do you see why the projection matrix is called the projection
matrix?






The projection matrix is sometimes called the hat matrix. Any
thoughts as to why?



A closely related matrix to Pis the annihilator matrix M:

M=1I,—-P



A closely related matrix to Pis the annihilator matrix M:
M=1,—P

It gets its name because MX = 0.



The matrix P = X(X'X) X" is clearly symmetric. It is also
idempotent:

P = X(X'X)'XX(X'X) "X



The matrix P = X(X'X) X" is clearly symmetric. It is also
idempotent:
P = XXX 'XX(XX) X
= X(X'X)71(X'X)(X'X)"1x!



The matrix P = X(X'X) X" is clearly symmetric. It is also
idempotent:

P = X(XX)IXX(xXX)“lx
= X(X'X)71(X'X)(X'X)"1x!
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The matrix P = X(X'X) X" is clearly symmetric. It is also
idempotent:

P = X(XX)IXX(xXX)“lx
= X(X'X)71(X'X)(X'X)"1x!
= X(x'x)~lx!

= P



M is also symmetric

M = (I, — P)!
:(In_Pt)



M is also symmetric

M = (I, - P
- (In - Pt )
M
And idempotent:
M? (I, — P)?



M is also symmetric

M = (I, — P)!
= (I — P )
M
And idempotent:
M2 = (In —-P )2

= (In_P)(In_P)
= I,—2%xP+ P



M is also symmetric

M = (I, — P)!
:(In_Pt)

And idempotent:

M = (In_P>2
= (L—P)(L,—P)
= [n—2>kP—|—P2
= I[,—2%xP+P



M is also symmetric

M = (I, — P)!
:(In_Pt)

And idempotent:

M = (I,—P)?

(I — P)(I, — P)
I, —2xP+ P
I,—2%P+P
I,—P

= M



M is also symmetric

M = (I, — P)!
:(In_Pt)
M
And idempotent:
M = (I,—P)?
— (L-P(L—P)
= I,—2%P+P
= I,—2%xP+P
= I,—P
= M

These properties both make sense given the geometric interpretation
of Pand M as projections; into the column space of X and the
compliment of the columns space of X.



These properties are quite useful. Notice how we can easily rewrite
the following for the residual vector r = y — X@3:

r = y—XB
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These properties are quite useful. Notice how we can easily rewrite
the following for the residual vector r = y — X@3:

r = y—XB
= y—Py
= (I,— Py
= My
= M(XB+¢)



These properties are quite useful. Notice how we can easily rewrite
the following for the residual vector r = y — X@3:

r = y—XB
y— Py
(In_P)y
My
M(XPB + €)
= Me



These properties are quite useful. Notice how we can easily rewrite
the following for the residual vector r = y — X@3:

r = y—XB
y— Py
(In_P)y
My
M(XPB + €)
= Me

The matricies P and M not only help make the derivation easier, they
also give geometric insight into what we are doing.



One particularly useful formula will be writing the squared residuals
as:

1715 = || Me|[3
= e'MMe
= e'Me



One particularly useful formula will be writing the squared residuals
as:

1715 = || Me|[3
= e'MMe
= e'Me

So the matrix M translates the sum of squared residuals into the sum
of the square errors, which are estimated by the residuals.



APPLICATIONS



