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Goals for today

1. Linear models assumptions
2. OLS Finite sample properties



Linear modelsassumptions



I. Linearity

We observe a pair of random variables (y,X), which have the
following relationship for some random vector ϵ and fixed vector β:

y = Xβ + ϵ

We assume that the following dimensions hold.

y ∈ Rn

X ∈ Rn×p

β ∈ Rp

ϵ ∈ Rn



II. Strict exogeneity

For all X, we have:

E (ϵ|X) = 0 (1)

The ‘strict’ part comes from the conditional on all of X.

Notice that this implies the weaker assumption we used with simple
linear models:

E (ϵ) = E {E (ϵ|X)} (2)
= E {0} (3)
= 0 (4)



III. No multicollinearity

We have:

P [rank(X) = p] = 1

When broken, it is impossible to do inference on β without
additional assumptions.



IV. Spherical errors

The variance of the errors is given by:

V (ϵ|X) = σ2In

Recall that when Eu = 0 we have Vu = E(uut).

We can break this assumption into two parts; the homoscedasticity
assumption:

E(ϵ2i |X) = σ2

and no autocorrelation assumption:

E(ϵiϵj|X) = 0 i ̸= j



V. Normality

The final, most restrictive assumption, is that the errors follow a
multivariate normal distribution:

ϵ|X ∼ N (0, σ2In)



Classical linear model assumptions

I. Linearity Y = Xβ + ϵ

II. Strict exogeneity E (ϵ|X) = 0

III. No multicollinearity P [rank(X) = p] = 1

IV. Spherical errors V (ϵ|X) = σ2In

V. Normality ϵ|X ∼ N (0, σ2In)



Finite sampleproperties



Ordinary least squares

We have already derived the ordinary least square estimator:

β̂ = (XtX)−1Xty



If we define the following values:

Sxx =
1

n
XtX

sxy =
1

n
Xty

The ordinary least squares estimator can also be written:

β̂ = S−1
xx sxy

A form that will be useful for large sample theory.



Special matricies

Last time we defined the following matricies:

P = X(XtX)−1Xt

M = In − P

Today we have one more matrix A that does not have a direct
geometric interpretation but is nonetheless very useful:

A = (XtX)−1Xt

Ay = β̂



Last time we showed that:

P2 = Pt = P

M2 = Mt = M

PX = X

MX = 0

Py = Xβ

My = Mϵ = r



Thematrix A is not square, but the outer product has a nice property:

AAt = (XtX)−1XtX(XtX)−1

= (XtX)−1



Three final definitions

The residuals, estimate of the σ2 parameter, and sum of squared
residuals are given as:

r = y− Xβ̂

s2 =
1

n− p
rtr

SSR = rtr



Finite sample properties

Under assumptions I-III:

(A) E(β̂|X) = β

Under assumptions I-IV:

(B) V(β̂|X) = σ2(XtX)−1

(C) β̂ is the best linear unbiased estimator (Gauss-Markov)

(D) Cov(β̂, r|X) = 0

(E) E(s2|X) = σ2

Under assumptions I-V:

(F) β̂ achieves the Cramér–Rao lower bound



(A) Unbiased regression estimate β̂

Notice that the error in our estimate can be re-written in terms of
the matrix A:

β̂ − β = (XtX)−1Xty− β

= (XtX)−1Xt(Xβ + ϵ)− β

= (XtX)−1XtXβ + (XtX)−1Xtϵ− β

= β + (XtX)−1Xtϵ− β

= Aϵ

From here, we can derive the unbiased result easily:

E(β̂ − β|X) = E(Aϵ|X)
= A · E(ϵ|X)
= 0



(B) Form of the variance

The formula for the variance of the ordinary least squares estimator
can be derived from our assumptions and prior results.

V(β̂|X) = V(β̂ − β|X)
= V(Aϵ|X)
= AV(ϵ|X)At

= AE(ϵϵt|X)At

= A(σ2In)At

= σ2AAt

= σ2(XtX)−1



(E) Unbiased s2

We have already established that rtr = ϵtMϵ, so all we need to do is
show that E(ϵtMϵ|X) = σ2(n− p).

We can write this expected value in terms of the trace of M:

E(ϵtMϵ|X) =
n∑

i=1

n∑
j=1

mi,jE(ϵiϵj|X)

=
n∑

i=1

mi,iσ
2

= σ2
n∑

i=1

mi,i

= σ2tr(M)



Now we simply need to calculate the trace of M:

tr(M) = tr(In − P)

= tr(In)− tr(P)

= n− tr(P)

And then,

tr(P) = tr(X(XtX)−1Xt)

= tr((XtX)−1XtX)

= tr(Ip)
= p

Plugging back into the original yields the result.


