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Goals for today

1. Linear models assumptions

2. OLS Finite sample properties






I. Linearity

We observe a pair of random variables (y, X), which have the
following relationship for some random vector € and fixed vector 3:

y=XB+e
We assume that the following dimensions hold.

yeR”
X € R™P
B € RP
e c R"



II. Strict exogeneity
For all X, we have:

E(e]X) =0 (1)
The ‘strict’ part comes from the conditional on all of X.

Notice that this implies the weaker assumption we used with simple
linear models:

E(e) =E{E (e|X)} (2)
= E {0} (3)
=0 (4)



III. No multicollinearity
We have:
P[rank(X) = p] =1

When broken, it is impossible to do inference on 3 without
additional assumptions.



IV. Spherical errors
The variance of the errors is given by:

V (e X) = oI,
Recall that when Eu = 0 we have Vu = E(uu').

We can break this assumption into two parts; the homoscedasticity
assumption:

2 2
E(ef|X) =0
and no autocorrelation assumption:

}E(Giﬁj‘X) =0 175_]



V. Normality

The final, most restrictive assumption, is that the errors follow a
multivariate normal distribution:

e|X ~ N(0,0°T,)



Classical linear model assumptions

I Linearity Y=X3+¢

IL Strict exogeneity E (¢|X) =0

III. No multicollinearity P [rank(X) = p] =1
IV. Spherical errors  V (¢|X) = oI,

V. Normality ¢|X ~ N(0,02I,)






Ordinary least squares

We have already derived the ordinary least square estimator:

B=(x'X)""X'y



If we define the following values:

1
S = —X'X
n
1Xf
Sy = —
Xy n y

The ordinary least squares estimator can also be written:
2 o1
B - Sxx Sxy

A form that will be useful for large sample theory.



Special matricies

Last time we defined the following matricies:

P=X(X'X)"x!
M=1,-P

Today we have one more matrix A that does not have a direct
geometric interpretation but is nonetheless very useful:

A= (X'X)"1x!

Ay=p



Last time we showed that:

P=pP=p
M=M=M
PX=X

MX =0

Py =XpB

My=Me=r



The matrix A is not square, but the outer product has a nice property:

AA' = (X'X)TIXIX(XX) !
= (XX~



Three final definitions

The residuals, estimate of the o2 parameter, and sum of squared
residuals are given as:

SSR = /'r



Finite sample properties
Under assumptions I-III:
(A E(BIX) = 8
Under assumptions I-IV:
(B) V(B|X) = 0*(X'X) !
(©) ,B\ is the best linear unbiased estimator (Gauss-Markov)
(D) Cov(B, 11 X) = 0
(E) E(s?|X) = o2
Under assumptions I-V:

(F) B\ achieves the Cramér-Rao lower bound



(A) Unbiased regression estimate B

Notice that the error in our estimate can be re-written in terms of
the matrix A:

B-B = (XX)'Xy-p
= (XX) ' X(XB+e) -8
= (X'X)7IX'XB + (X'X) "1 X'e — 3
= B+ (XX Xe-p
= Ae

From here, we can derive the unbiased result easily:

E(B — B]X) = E(A¢X)
= A-E(¢X)
=0



(B) Form of the variance

The formula for the variance of the ordinary least squares estimator
can be derived from our assumptions and prior results.

V(BIX) = V(B-BIX)
= V(A4¢X)

AV (€] X) A

AE (ee'| X) A

A(o’T,) A

oZAA!

— o2 (xx)!



(E) Unbiased s*

We have already established that r'r = ¢'Me, so all we need to do is
show that E(e!Me|X) = o2(n — p).

We can write this expected value in terms of the trace of M:

E(e'Me|X) = sz,] (ei6j]X)

11]7

= Z mi,i02
i=1
n
= 0 Z mi,;
i=1

= (M)



Now we simply need to calculate the trace of M:

tr(M) = (I, —P)
tr(I,) — tr(P)
= n—tr(P)

And then,

tr(P) = tr(X(X'X)"1x")

Plugging back into the original yields the result.



