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Notes

– Problem Set #3 - Due today
– Review session on Sunday, 4pm at 24 Hillhouse
– Midtern I - In class, next Monday



Goals for today

– Notes on weighted least squares and GLS
– Review of the standard linear regression theory



WLS and GLS



On the problem set, you considered a regression model where the
covariance marix of the error terms is known to be proportional to
some matrix V(X).



The standard way to solve this problem is to decompose the inverse
of V as CtC, and to left multiply the regression problem by C:

y = Xβ + ϵ

Cy = CXβ + Cϵ

ỹ = X̃β + ϵ̃

Now, we see that the covariance matrix of the transformed error
terms are spherical:

V(ϵ̃|X) = E(ϵ̃ϵ̃t|X)
= E(CϵϵtCt|X)
= CE(ϵϵt|X)Ct

= σ2CVCt

= σ2In



The (very) important thing to notice about this transformation, is
that it does not effect β; the regression vector is exactly the same!
We have only transformed the data for the purpose of applying
ordinary least squares.

Therefore β̂ and s2 can be taken directly from the model fit on the
tilde versions of the variables.



In particular, prediction can be done as follows (only the colored
parts are different):

ynew|X ∈ Xnewβ̂ ± t ·
√

s2diag (Vnew(Xnew) + Xnew(XtV−1(X)X)−1Xt
new)

Notice that we only need the diagonal of Vnew(Xnew). For prediction,
we do not care about the covariance between predictions; only the
raw variances matter, and they can be completely different than the
variance of the data used for fitting the data.



If the matrix V(X) is diagonal, so only homoskedasticity is broken,
there is an even simplier way to approach this problem using
weighted least squares.



If the variance of is known to follow the equation:

E(ϵϵt|X) = σ2diag(w1, . . .wn)

Then C is a diagonal matrix with entries equal to 1/
√
wi, and the

tranformed model is just a weighted form of the original:

ỹi =
yi√
wi

X̃i,j =
Xi,j√
wi



Review



Format of the exam:

– Six question related to an applied problem
– Six short answers based on theoretical concepts
– No proofs
– Only covers up to contrasts; no hierarchical models
– Calculate t-tests, confidence intervals, F-tests from regression

tables



Ordinary least squares

We established that the least squares solution to the model:

y = Xβ + ϵ

Yields the solution:

β̂ = (XtX)−1Xty

As long as the matrix XtX is invertable.



Projection matricies

From a geometric interpretation of the least squares estimator, we
introduce an important matrix PX called the projection matrix.

P = X(XtX)−1Xt

And the similarly defined annihilator matrix:

M = 1− P



We showed the following properties of these matricies:

P2 = Pt = P

M2 = Mt = M

PX = X

MX = 0

Py = Xβ

My = Mϵ = r





Three final definitions

The residuals, estimate of the σ2 parameter, and sum of squared
residuals are given as:

r = y− Xβ̂

s2 =
1

n− p
rtr

SSR = rtr



Classical linear model assumptions

I. Linearity Y = Xβ + ϵ

II. Strict exogeneity E (ϵ|X) = 0

III. No multicollinearity P [rank(X) = p] = 1

IV. Spherical errors V (ϵ|X) = σ2In

V. Normality ϵ|X ∼ N (0, σ2In)



Finite sample properties

Under assumptions I-III:

(A) E(β̂|X) = β

Under assumptions I-IV:

(B) V(β̂|X) = σ2(XtX)−1

(C) β̂ is the best linear unbiased estimator (Gauss-Markov)

(D) Cov(β̂, r|X) = 0

(E) E(s2|X) = σ2

Under assumptions I-V:

(F) β̂ achieves the Cramér–Rao lower bound



T-test

Under assumptions I− V, to test the hypothesis that H0 : β = bj we
construct the following T-test:

t =
β̂j − bj√

s2
(
(XtX)−1

jj
)

=
β̂j − bj
S.E.(β̂j)

∼ tn−p

There is also a corrisponding confidence interval using the same
standard error.



The Hypothesis test H0 : Dβ = d for a full rank k by p matrix D
yields the following F-test:

F =
(SSRR − SSRU)/k
SSRU/(n− p)

Where we let SSRU be the sum of squared residuals of the
unrestricted model (rtr) and SSRR be the sum of squared residuals of
the restricted model (where the sum of squares is minimzed subject
to Dβ = d).



We did a lot of matrix manipulations in the proofs of these two
results. The most important ‘big picture’ results to remember are:

– If B is a symmetric idempotent matrix and u ∼ N (0, In), then
utBu ∼ χ2

tr(B).
– If B is a symmetric idempotent matrix, then all of B’s

eigenvalues are 0 or 1. In terms of the QtΛQ eigen-value
decomposition, this helps explain why we think of P and M as
projection matricies.



> out <- lm(Height ~ Father + Gender, data=h)
> summary(out)

Call:
lm(formula = Height ~ Father + Gender, data = h)

Residuals:
Min 1Q Median 3Q Max

-9.3708 -1.4808 0.0192 1.5616 9.4153

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.46113 2.13628 16.13 <2e-16 ***
Father 0.42782 0.03079 13.90 <2e-16 ***
GenderM 5.17604 0.15211 34.03 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.277 on 895 degrees of freedom
Multiple R-squared: 0.5971, Adjusted R-squared: 0.5962
F-statistic: 663.2 on 2 and 895 DF, p-value: < 2.2e-16



We formally defined leverage as the diagonal elements of the
projection matrix:

li = Pii
=

[
X(XtX)−1Xt]

ii



From here, this suggested that we construct the following
confidence interval for the mean of ynew:

̂E(ynew|X) ∈ Xnewβ̂ ± tn−p,1−α/2 ·
√

s2Xnew(XtX)−1Xt
new



Finally, we then constructed the following prediction interval:

ynew|X ∈ Xnewβ̂ ± tn−p,1−α/2 ·
√

s2 [Ik + Xnew(XtX)−1Xt
new]

Which is exactly a factor of s wider than the confidence interval.


