
Lecture 12
Logistic Regression
14 October 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612



Notes

– Problem Set #4 - Due in two weeks
– No class next Monday



Goals for today

– Logistic regression
– Running GLMs in R



Logistic regression



Consider the case where yi ∈ {0, 1} for all values of i. If we write:

y = Xβ + ϵ

Why does it not make sense for ϵ to be independent of X?



If xtiβ is equal to 0.2, then ϵi has to be either −0.2 or 0.8.



Consier this variant on the classical linear regression model:

E(y|X) = Xβ

Does this solve our problem in the case of y ∈ {0, 1}?

No! The classical case, under assumptions I, II, and III already follow
this.
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A further generalization is to make the mean a function of Xβ,
rather than directly equal to it:

E(y|X) = g−1 (Xβ)

Here g, called the link function, is some fixed and known function.

What properties of g would we need to make regression on {0, 1}
work?
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If yi has a Bernoilli distribution, notice that this has only one
unknown parameter pi = P(y = 1). We can write the likelihood
function as (just plug in the two possible values of y to see that this
works):

L(yi|pi) = pyii · (1− pi)1−yi

Manipulating this a bit, we can write the likelihood as an
exponential family:

L(yi|pi) = (1− pi) ·
(

pi
1− pi

)yi

= (1− pi) · exp
(
yi · log

(
pi

1− pi

))
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I won’t derive the entire theory of exponential families today, but
this form suggests that the ‘canonical’ parameter in the Bernoilli
distribution is:

ηi = log
(

pi
1− pi

)
= logit(pi)

Therefore, a natural choice is to say that ηi is a linear function of xi:

ηi = xtiβ

In other words, g is equal to the logit function.
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Now, consider determining the mean of yi given a regression vector
β (in other words, invert the logit function):

log
(
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)
= xtiβ
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t
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1

1 + e−xtiβ
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So, plugging this back in, what we are assuming is the following
statistical model:

E(y|X) = 1

1 + e−Xβ

If yi are independent Bernoilli trials this fully describes the density
of y|x.
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What does the relationship between xtβ and pi look like?
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We could use other link functions g, the logit is simply a popular
choice given the theoretical connections to exponential families.



Assume instead that there exists a hidden variable Z such that:

Z = Xβ + ϵi, ϵi ∼i.i.d. N (0, σ2)

And then:

yi =
{

0, zi < 0
1, zi ≥ 0

What link function would give us this model?
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So this model uses the inverse cdf of the standard normal
distribution:

E(y|X) = Φ−1(Xβ)

Called the probit link.

Any other distribution with support on the
entire real line can be used.
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GLMs in R


