
Lecture 13
Solving Least Squares
28 October 2015

Taylor B. Arnold
Yale Statistics
STAT 312/612

Notes

– Problem Set #4 - Due today

Goals for today

– How to solve the normal equations in a stable way
– An alternative QR method
– Simulation to a highly correlated dataset
– Relationship of statistical noise to numerical error

Solving least sqares

When started looking at multivariate regression, I wrote down the
normal equations:

(XtX)β̂ = Xty

Recall that these are called equations (plural) because we can think
of this as a set of p simultaneous equations.

For the last month we have been assuming that we solve this by just
taking the matrix inverse of XtX to yield the following:

β̂ = (XtX)−1Xty

For the last month we have been assuming that we solve this by just
taking the matrix inverse of XtX to yield the following:

β̂ = (XtX)−1Xty

Why might this be a problem? Well, consider the simple case where
we have n = p = 2 with the following:

X =

(
109 −1
−1 10−5

)
β =

(
1
1

)
For simplicity, we’ll even assume that there is no noise vector. Then
we have:

y =

(
109 −1
−1 10−5

)
∗
(

1
1

)
=

(
109 − 1
−0.99999

)

Let’s try running this in R:

> X <- matrix(c(10^9, -1, -1, 10^(-5)), 2, 2)
> X

[,1] [,2]
[1,] 1e+09 -1e+00
[2,] -1e+00 1e-05
> beta <- c(1,1)
> y <- X %*% beta
> y

[,1]
[1,] 1.0000e+09
[2,] -9.9999e-01

So far, so good. Now, because we have a square design matrix we
can invert it directly and solve β = X−1y. This is not a problem here:

> Xinv <- solve(X)
> Xinv %*% y

[,1]
[1,] 1
[2,] 1

The correct β is returned.

However, what if we try to calculate this with the normal equations?
Here we need to invert the matrix XtX.

> XtXinv <- solve(t(X) %*% X)
Error in solve.default(t(X) %*% X) :
system is computationally singular: reciprocal
condition number = 8.09999e-23

R knows that this is not going to be good, and refuses to calculate
the inverse by default.

Suppose that we turn off this warning (by setting the tolerance to
zero); what happens?

> XtX <- t(X) %*% X
> Xty <- t(X) %*% y
> XtXinv <- solve(XtX, tol=0)
> XtXinv

[,1] [,2]
[1,] 1.0002e-08 1.0002e+01
[2,] 1.0002e+01 1.0002e+10
> betaHat <- XtXinv %*% Xty
> betaHat

[,1]
[1,] 0.9999995
[2,] 1080.4998042

So, here we see the results of the numerical instability. The returned
β̂ is not equal to the correct β!

So, other than inverting the matrix what are our options?

We’ll start by looking at three approachs, each of which involves a
matrix decomposition.

Consider the qr-decomposition of the matrix XtX:

XtX = QR

Where Q is a square orthonormal matrix (QQt = Ip) and R is an
upper triangular matrix.

Because Q is orthonormal, we can calculate its inverse in an easy
and stable way, yielding the following:

XtXβ̂ = Xty

QRβ̂ = Xty

Rβ̂ = QtXty

Rβ̂ = v

Where v is just a compact way of writing QtXty.

To solve the equation:

Rb = v

We use a technique called backsolving.

The best way to describe the backsolve algorithm is with a simple
example. Consider the 3 by 3 matrix case: R1,1 R1,2 R1,3

0 R2,2 R2,3
0 0 R3,3

 b1
b2
b3

 =

 v1
v2
v3

What is an obvious place to start?

Well, we can see right away that:

b3 =
v3
R3,3

Now, if we know b3 what can we do as a next step? R1,1 R1,2 R1,3
0 R2,2 R2,3
0 0 R3,3

 b1
b2
b3

 =

 v1
v2
v3

Well, now we can calculate

b2 =
v2
R2,2

+
R2,3 · b3
R2,2

So, now for the final line of R1,1 R1,2 R1,3
0 R2,2 R2,3
0 0 R3,3

 b1
b2
b3

 =

 v1
v2
v3

By calculating the same thing:

b1 =
v1
R1,1

+
R1,2 · b2
R1,1

+
R1,3 · b3
R1,1

You can see that this algorithm generalizes to solving any linear
system Ab = x with an upper diagonal matrix A. In only requires
basic arithmetic and therefore has minimal numerical issues.

Notice that we never actually produce the inverse matrix itself. We
only apply and algorithm which produces the inverse at any given
point.

Now, back to our example:

XtXβ̂ = Xty

QRβ̂ = Xty

Rβ̂ = QtXty

Rβ̂ = v

We can then complete the final line by backsolving.

We can calculate the qr decomposition in R:

> QR <- qr(XtX)
> QR
$qr

[,1] [,2]
[1,] -1e+18 1.000000e+09
[2,] -1e-09 9.998002e-11

$rank
[1] 1

$qraux
[1] 2.000000e+00 9.998002e-11

$pivot
[1] 1 2

To get the actual matricies, we need to run two functions to calcualte
them from the R object:

> Q <- qr.Q(QR)
> R <- qr.R(QR)

And then we can solve the normal equations:

> v <- t(Q) %*% Xty
> backsolve(R, v)

[,1]
[1,] 1
[2,] 0

Okay, so still not the correct β (which should have both components
equal to 1), but still a lot better than the completely unstable solution
we had previously.

Note that we can do this all in one step automatically inside of R.
However, by default we get a warning this this is a bad idea:

> betaHat <- qr.solve(XtX, Xty)
Error in qr.solve(XtX, Xty) : singular matrix 'a' in solve

Turning this off yields the result that we calculated ourselves:

> betaHat <- qr.solve(XtX, Xty, tol=0)
> betaHat

[,1]
[1,] 1
[2,] 0

Another decompostion that is useful for solving this problem is the
Cholseky decomposition, which writes a matrix as UtU for some
upper diagonal matrix U. If we use this the solution can be
calculated by forward solving (the same as backsolving, but for a
lower diagonal matrix) and then backsolving.

In R, we can do this as follows:

> U <- chol(XtX)
> U

[,1] [,2]
[1,] 1e+09 -1.000000e+00
[2,] 0e+00 9.999001e-06

And solving yields:

> betaHat <- backsolve(U, forwardsolve(t(U), Xty))
> betaHat

[,1]
[1,] 1
[2,] 0

So this gives the same solution as the QR decomposition.

A final technique is the eigenvalue decomposition, which writes a
matrix as QDQt for Q orthogonal and D a diagonal matrix.

To solve this we simply multiply by Qt on the left, divide by the
diagonal of D, and multiply by Q.

In R, the eigen value decomposition is given by the function eigen:

> EIGEN <- eigen(XtX)
> EIGEN
$values
[1] 1.000000e+18 9.998002e-11

$vectors
[,1] [,2]

[1,] -1e+00 -1e-09
[2,] 1e-09 -1e+00

And to solve the linear system we see that:

> Q <- EIGEN$vectors
> D <- diag(EIGEN$values)
> step01 <- t(Q) %*% Xty
> step02 <- step01 / diag(D)
> betaHat <- Q %*% step02
> betaHat

[,1]
[1,] 1e+00
[2,] -1e-09

Which is very close to what the other methods yielded.

So we have three methods: the Cholesky decomposition which
involves two diagonal solves (one back and one forward), the QR
which involves one diagonal solve and one matrix multiplication,
and the eigenvalue decompositon which involves two matrix
multiplications.

Each of these has its own uses and pros and cons. We will likely
discuss some of these over the next few weeks. For now though, we
are mostly concerned with the fact that none of them return the
correct β̂ that we expect.

So far we have only taken decompositions of square matricies. The
QR decomposition actually yields a solution even for rectangular
matricies. We can write the decomposition of the n-by-pmatrix A as:

A =
[
Q1 Q2

]
·
[
R1
0

]
With R1 being a p-by-p matrix, Q1 a n-by-p matrix and Q2 a
n-by-(n− p) matrix. This is sometimes known as the thin QR
decomposition. Notice that Q2 is not unique, nor is it even needed to
reconstruct A.

Now, let’s take a step back from the normal equations and consider
the sum of squares directly:

||y− Xβ||22 = (y− Xβ)t(y− Xβ)

Notice that if we have an orthonormal matrix Q we can insert this
into the middle of the sum of squares without changing the value:

||Q(y− Xβ)||22 = (y− Xβ)tQtQ(y− Xβ)

= (y− Xβ)tQtQ(y− Xβ)

= (y− Xβ)t(y− Xβ)

= ||y− Xβ||22

On its own, this is an important (though hopefully unsurprising)
result. We can rotate the problem by any orthonormal matrix and
return the same sum of squares; this will be very useful in several
ways.

On of those ways comes from taking the QR decomposition of the
matrix X and rotating the space by the transpose of the resulting Q.

Then, we can then write the squared residuals as

Qt(y− Xβ) =
[
Qt
1

Qt
2

]
y−

[
Qt
1

Qt
2

]
×

[
Q1 Q2

]
·
[
R1
0

]
β

=

[
Qt
1

Qt
2

]
y−

[
R1
0

]
β

Notice that the final n− p rows of the resulting vector do not
involve β as they are canceled out by the 0.

So we now have the following equation:

||y− Xβ||22 = ||Qt(y− Xβ)||22
= ||Qt

1y− R1β||22 + ||Qt
2y||22

This is actually very useful, because we can minimize over β by just
minimizing the first term, which can actually be set exactly equal to
zero:

Qt
1y = R1β

R−1
1 Qt

1y = β

Though, as you now know, we would actually backsolve rather than
take the actual inverse of R1.

So now, let’s try this on our problem:

> E <- qr(X)
> Q <- qr.Q(E)
> R <- qr.R(E)
> backsolve(R, t(Q) %*% y)

[,1]
[1,] 1
[2,] 1

Thankfully, this yields the expected result!

Carefully note though, that there is some numerical error that is
hidden by the default precision of R:

> options(digits=22)
> backsolve(R, t(Q) %*% y)

[,1]
[1,] 1.0000000000000000000000
[2,] 0.9999999999982769338658

Carefully note though, that there is some numerical error that is
hidden by the default precision of R:

> options(digits=22)
> backsolve(R, t(Q) %*% y)

[,1]
[1,] 1.0000000000000000000000
[2,] 0.9999999999982769338658

This method has a nice geometric interpretation in relationship to
the geometry of least squares:

What is really going on here?

> options(digits=22)
> betaHat <- qr.solve(XtX, Xty, tol=0)

[,1]
[1,] 0.9999999990000000282819
[2,] 0.0000000000000000000000
> XtX %*% betaHat - Xty

[,1]
[1,] 0
[2,] 0

Directly solving the normal equations produces solutions that
correctly give XtXβ = Xty.

Now, let us try this on a non-square matrix to illustrate what
happens in a more typically setting.

We construct a dataset with 25 highly correlated columns:

> options(digits=22)
> n <- 1000
> p <- 25
> alpha <- 1e-5
> X <- matrix(runif(n*p), ncol=p)
> X <- alpha * X + matrix(rnorm(n), nrow=n, ncol=p)
>
> beta <- runif(p)
> y <- X %*% beta + rnorm(n,sd=0.5)
> cor(X[,1], X[,2])
[1] 0.9999999999916668880218

Now let us try our two methods for solving the ordinary least
squares problem.

Normal equations (Cholesky)

> XtX <- t(X) %*% X
> Xty <- t(X) %*% y
>
> U <- chol(XtX)
> betaChol <- backsolve(U, forwardsolve(t(U),Xty))

QR-decomposition

> QR <- qr(X)
> Q <- qr.Q(QR)
> R <- qr.R(QR)
> dim(Q)
[1] 1000 25
> dim(R)
[1] 25 25
>
> betaQR <- backsolve(R, t(Q) %*% y)

Look at the quantiles of the results

> options(digits=8)
> quantile(beta)

0% 25% 50% 75% 100%
0.0042836969 0.2510972756 0.5518817164 0.8211262035 0.9827954113
> quantile(betaQR)

0% 25% 50% 75% 100%
-15406.39499 -1497.12478 134.70958 3361.91288 7500.65667
> quantile(betaChol)

0% 25% 50% 75% 100%
-15405.61168 -1499.20582 134.37818 3361.92816 7499.46646

The predicted values are significantly larger in magnitude than the
true beta values!

Comparison of regression vectors:

> sqrt(sum(abs(betaQR - betaChol)^2)) / sqrt(sum(abs(betaQR)^2))
[1] 0.00047420293

And the predicted values:

> sqrt(sum(abs(X %*% betaQR - X%*% betaChol)^2)) /
+ sqrt(sum(abs(X %*% betaQR)^2))
[1] 2.7345493e-06

These represent numerical imprecision; the difference
between the two methods of calculating the regression vector

Now, compare the predicted value (QR) to the actual β and y values:

> sqrt(sum(abs(betaQR - beta)^2)) /
+ sqrt(sum(abs(betaQR)^2))
[1] 0.99999031

And the predicted values:

> sqrt(sum(abs(X %*% betaQR - X %*% beta)^2)) /
+ sqrt(sum(abs(X %*% betaQR)^2))
[1] 0.0055357352

These represent the statistical error. They are much worse,
particularly for the regression vector.

Notice that the normal equations are solved very well, even though
the regression vector is not:

> max(abs(t(X) %*% X %*% betaQR - t(X) %*% y))
[1] 5.7070793e-08
> max(abs(t(X) %*% X %*% betaChol - t(X) %*% y))
[1] 9.7188604e-09

What is going on here? We have seen this before when we had a
model that was generated by the following:

Y = X1 + X2 + noise

If X1 and X2 are highly correlated it will be very difficult to
distinguish the true model from any of the following:

Y = 2× X1 + noise
Y = 3× X1 − X2 + noise
Y = 200× X1 − 199× X2 + noise

Notice how the coefficents can easily be orders of magnitude larger
than the true model.

The big picture

Why do we (i.e., STAT 612) care about numerical precision?

It is very difficult to construct non-trival datasets that exhibit
numerically unstable results (at least, without doing something that
makes no sense in practice). The main reason we are still interested
is because methods for addressing the statistical error mimic (and
are motivated by) the methods for fixing numerical errors.

Bad statistical noise is very common even with only moderately
correlated covariates!

