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Goals for today

– singular value decomposition
– condition numbers
– application to mean squared errors
– (time permitting) image dataset



A matrix A ∈ Rn×m can be thought of as a linear mapping between
two spaces:

A : Rm → Rn

This interpretation requires no assumptions on the shape or
structure of the matrix A.



The singular value decomposition writes the matrix A as a product
of three matricies:

A = UΣVt

Where U ∈ Rn×n and V ∈ Rm×m are orthonormal matricies and Σ is
the rectangular diagonal matrix diag(σ1, σ2, . . . , σmin(n,m)).

This decompositon exists for any real matrix A.



By convention, the values of Σ are arranged in decending order:
σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m).

These are called the singular values of the matrix A.

The number of non-zero singular values is equal to the rank of the
matrix A.



The singular value decomposition allows us to write the matrix A as
a sum of r, rank 1 matricies:

A =

r=rank(A)∑
i

σiuivti



A useful way of viewing the singular value decomposition is to think
about what would happen when projecting columns of U and V:

Avi = σiui
Atui = σivi

Notice that both equations use σi!



Therefore, if we have an arbitrary vector z ∈ Rm and we write it in
the basis of V:

z =
∑
i

αivi

The mapping of A can be easily calculated in the coordinate system
of U:

Az =
∑
i

αiσiui

Due to the linearity of the matrix operation.





As an example, let’s construct a 2-by-3 matrix:

> A <- matrix(1:6,ncol=3)
> A

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6



The singular value decomposition can be calculated by the svd
function in R. By default only min(n,m) columns of U and V are
calculated, but we’ll ask for all of them here.

> svd(A, nu=2, nv=3)
$d
[1] 9.5255181 0.5143006

$u
[,1] [,2]

[1,] -0.6196295 -0.7848945
[2,] -0.7848945 0.6196295

$v
[,1] [,2] [,3]

[1,] -0.2298477 0.8834610 0.4082483
[2,] -0.5247448 0.2407825 -0.8164966
[3,] -0.8196419 -0.4018960 0.4082483



We can extract the three components of the SVD and verify that the
matrix A is returned:

> SVD <- svd(A, nu=2, nv=3)
> Sigma <- cbind(diag(SVD$d),0)
> U <- SVD$u
> V <- SVD$v
> A - U %*% Sigma %*% t(V)

[,1] [,2] [,3]
[1,] 2.220446e-16 4.440892e-16 0
[2,] 0.000000e+00 4.440892e-16 0

Notice that there are some small errors in the decomposition.



> N <- 1e5
> p <- 3
> unitBall <- matrix(runif(N * p, -1, 1), nrow=3)
> unitBall <- unitBall[,apply(unitBall^2, 2, sum) < 1]
> unitBall[,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 0.5287973 -0.7040859 -0.7248478 -0.4671987 0.05705657
[2,] 0.4255332 -0.3016897 0.3072752 0.5290554 0.78391679
[3,] 0.5349525 -0.4057218 -0.5348268 -0.3940231 -0.51866525



> projUnitBall <- t(A %*% unitBall)
> head(projUnitBall)

[,1] [,2]
[1,] 4.4801594 5.9694424
[2,] -3.6377640 -5.0492614
[3,] -2.4771562 -3.4295556
[4,] -0.8501476 -1.1823139
[5,] -0.1845193 0.1377888
[6,] 4.8409047 5.9547905
> plot(projUnitBall,pch=".")
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> A %*% V
[,1] [,2] [,3]

[1,] -5.902292 -0.4036717 8.881784e-16
[2,] -7.476526 0.3186758 4.440892e-16
> sqrt(apply((A %*% V)^2, 2, sum))
[1] 9.525518e+00 5.143006e-01 9.930137e-16
>
> v1 <- (A %*% V)[,1]
> v2 <- (A %*% V)[,2]
> arrows(0,0,v1[1],v1[2],col="red",lwd=2)
> arrows(0,0,v2[1],v2[2],col="green",lwd=2)
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Now consider the following quantity for a full rank matrix A:

||Aδ||2
||δ||2

Let δ =
∑

i αivi. Then:

||Aδ||2
||δ||2

=

√∑
i σ

2
i α

2
i v

2
i∑

i α
2
i v

2
i

We can see that the minimum occurs when δ is equal to vmin(n,m).

Likewise, the maximum occurs when δ is equal to v1.



So, we have the following inequality for all δ ̸= 0:

σmin ≤
{
||Aδ||2
||δ||2

}
≤ σmax

For the singular values σmin and σmax.



Finally, notice that the inner product can be written compactly in
terms of the singular values:

AtA = VΣtUtUΣVt

= VΣ2Vt

This just the eigenvalue decomposition of the matrix AtA. Notice
that the eigenvalues of AtA are the squares of the singular values of
A.



Back to linear models

In a linear model, we only observe Xβ, rather than β itself. We have
already seen that numerical problems can lead to multiple solutions
for which the Xβ’s is very similar but the regression vectors β are
quite different.



Say that we have an error (or noise) ∆ in the term β. Formally, we
wish to control the ratio of the relative error in estimation to that of
projection:

rel. error estimation
rel. error projection =

||β +∆||2/||β||2
||X(β +∆)||2/||Xβ||2

< ϵ

So we do not want large changes in ∆ to yield relatively small
changes in the prediction space Xβ.



Notice that we can re-arrange the equation as:

||β +∆||2/||X(β +∆)||2
||β||2/||Xβ||2

And now we have an upper bound on the numerator and an lower
bound on the denominator via the singular values:

rel. error estimation
rel. error projection ≤ σmax

σmin

This is called the condition number of the matrix A, and was the
quantity R complained about last week when I tried to invert an
ill-conditioned matrix.



The ∆ in this equation could be (amongst other things) numerical
error, measurment error, or statistical noise. In any case, badly
conditions matrices X make solving linear systems difficult.



Mean squared error

Completely switching topics for the moment, consider the mean
squared error (MSE) of an estimator β̂:

E||β − β̂||22 = E
∑
j

(βj − β̂)2

=
∑
j

E(βj − β̂)2

=
∑
j

Var(β̂j) +
[
E(βj − β̂)

]2
= tr(Var(β̂)) + ||Bias(β̂)||22

This is the multivariate version of the version you (hopefully) saw in
introductory statistics.



The mean squared error of the ordinary least squares estimator can
be calculated as follows, given the formula we derived for the
variance and the fact that it is unbiased:

MSE(β̂OLS) = tr
[
σ2(XtX)−1

]
= σ2tr

[
(XtX)−1

]



On the last homework, I ask you to look at an estimator which has
been shrunk towards zero by a factor of α:

β̂α = α · β̂OLS

You then compared the mean squared error of this to the standard
ordinary least squares solution using a series of simulations.

Let’s calculate the mean squared error directly.



We see quickly that:

MSE(β̂α) = tr(Var(β̂α)) + ||Bias(β̂α)||22
= α2σ2tr

[
(XtX)−1

]
+ (1− α)2||β||22

What is the relationship between the optimal α and the quantities
σ2 and ||β||22?



Sacrificing bias for a reduction in variance is, generally, a very
good idea, but we are not doing so in a very intelligent way
here.



What is the quantity tr
[
(XtX)−1

]
? Well, in terms of singular values

we have:

tr
[
(XtX)−1

]
= tr

[
(VΣ2Vt)−1

]
= tr

[
VΣ−2Vt]

= tr
[
Σ−2VtV

]
= tr

[
Σ−2

]
=

r∑
i=1

1

σ2
i

So a disproportionate amount of variance is coming from the
smallest singular values.

What if we could just shrink the variance in the directions of
the lowest singular values?



Two possible solutions:

(1) Principal component regression uses only the first k singular
vectors of the data matrix X in the regression model.

(2) Ridge regression scales the ordinary least squares solution by
shrinking a small amount in the direction of the largest singular
values and a large amount in the direction of the smallest singular
values.



Summary of today’s lecture

1. Singular value decomposition can be applied to any real matrix
A without regard to its shape or structure.

2. Singular values are a generalization of eigenvalues.
3. The ratio of the largest singular value to the smallest singular

value indicates how difficult it is to solve the linear system
y = Ab by least squares. The quantity is called the condition
number of the matrix.

4. The smallest singular value directions contribute a
disproportionate amount of variance in the estimation of the
regression vector using ordinary least squares.


