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Notes

– problem set 5 posted; due next Wednesday
– problem set 6 will be due in two weeks, November 18th, and is

also posted (courtesy of DP)
– the second midterm will be a take-home exam; available online

on December 2nd, and due December 7th
– the final problem set, 7, is formally due the last day of classes

(but we’ll accept them through December 14th)



Goals for today

– a note on numerical and statistical noise
– ridge regression formulation and link to SVD
– principal component analysis
– applications to image data



Statistical noise as numerical noise

In problem set 5 you are going to construct the pseudo-inverse A+ of
an arbitrary matrix A in terms of A’s singular value decomposition.

Consider the standard description of a statistical linear model:

y = Xβ + ϵ

If we have some sort of inverse of X, we can try to write this as:

y′ = X(β + X+ϵ)

And now the error is in β rather than in y.



Statistical noise as numerical noise, cont.

It turns out that the y values in the second equation will not be
exactly the same as those generated by the original model for the
same error terms. However, the least squares estimate of β will be
the same.

So, when considering statistical linear models we know that there is
an equivalent problem involving the same X matrix and β vector for
which the noise is only due to numerical or measurement error in β.

This is purely to justify why we care about condition numbers and
linking concepts in numerical analysis with those in statistics. We
would never actually convert the problem to this alternative format,
partially because we cannot without knowledge of the error terms.



Ridge regression

The ridge regression estimator is the solution to the following
modified least squares optimization problem for some value of
λ > 0.

β̂ridge = argmin
b

{
||y− Xb||22 + λ||b||22

}



Why the ridge penalty?

1. The equation shrinks the coefficients towards zero, adding some
bias but reducing the variance of the estimator.

2. Using the ℓ2-norm keeps the equation rotationally invariant.
3. Ridge regression has an analytical solution.



To see this write the criterion as a matrix equation:

(y− Xb)t(y− Xb) + λbtb = yty+ btXtXb− 2ytXb+ λbtb

And take its derivative:

∂

∂β

(
yty+ btXtXb− 2ytXb+ λbtb

)
= 2XtXb− 2Xty+ 2λb



Setting this to zero yields

2XtXβ̂ + 2λβ̂ = 2Xty

(XtX+ Ipλ)β̂ = Xty

β̂ = (XtX+ Ipλ)−1 · Xty

This is a useful analytical form, though as with least squares we
would generally not invert the matrix directly but instead use a
stable matrix decomposition.



Now consider the singular value decomposition UΣVt of the matrix
X. We can write the projection matrix P in terms of this as:

P = X(XtX)−1Xt

= UΣVt(VΣ2Vt)−1VΣUt

= UΣVtVΣ−2VtVΣUt

= U
[
Ip 0
0 0

]
Ut

This can be written as UUt if we remember to use the thin SVD.



The analogue of the projection matrix for ridge regression is given
by:

Pλ = X(XtX+ λIp)−1Xt

Where P0 is equal to the ordinary P. As was the case last time, this
matrix maps y into the predicted values ŷ.



Notice that because VVt is equal to the identity matrix, we can write
the inner term of this projection matrix in a nice form:

XtX+ λIp = VΣ2Vt + λVVt

= V(Σ2 + λ)Vt

And the inverse is given as:

(XtX+ λIp)−1 = V(Σ2 + λ)−1Vt

= VEλVt

Where Eλ is a diagonal matrix with entries:

Eλ = diag
(

1

σ2
max + λ

, . . . ,
1

σ2
min + λ

)



Remember that the condition number is the ratio of the largest and
smallest singular value of a matrix.What is the condition number of
XtX?

cond(XtX) =
σ2
max

σ2
min

(1)

How about the condition number of XtX+ λIp?

cond(XtX+ λIp) =
σ2
max + λ

σ2
min + λ

(2)

How does the incorporation of λ change our ability to invert the
matrix?



Back to the projection matrix, what is the decomposition of Pλ in
terms of the singular value decomposition?

Pλ = X(XtX+ λIp)−1Xt

= UΣVt(VtΣ2V+ λIp)−1VΣUt

= UΣVtV(Σ2 + λIp)−1VtVΣUt

= UΣ(Σ2 + λIp)−1ΣUt

= UDUt

For the diagonal matrix D:

D = diag
(

σ2
1

σ2
1 + λ

, . . . ,
σ2
p

σ2
p + λ

)
(3)

So we are shrinking in the directions of the singular vectors, with
more shrinkage on the smaller singular values.



Finally, and similarly, we can write the solution β̂λ as:

β̂λ = V · diag
(

σ1
σ2
1 + λ

, . . . ,
σp

σ2
p + λ

)
· Uty



Application of ridge to a single photo



Principal component analysis

The principal components of the matrix X is a linear
reparameterization T = XW of the matrix X such that:

1. Each new coordinate is uncorrelated with the others;
specifically, W is an orthogonal matrix called the loadings

2. The first component has the largest variance of all linear
combinations of the columns of X, the second has the highest
variance conditioned on being uncorrelated with the first, and
so forth.



Considering the first column of the matrix W, we can write the
condition as follows:

argmax
w: ||w||2=1

{||Xw||2}

However, we already know that this is maximized when w is a
multiple of the first right singular vector. That is, the first column of
V in the singular value decomposition UΣVt of X.



Likewise, we can argue that the second column of W is the second
column of V, and so forth for all of the principal components.

Therefore, the principal components are given by T = XV. This gives:

T = XV

= UΣVtV

= UΣ

So the components are the weighted columns of the left singular
values.



Principal component regression (PCR) uses the first k columns of T
as the design matrix, which we will denote Tk = UkΣk. The
regression vector is then defined as:

β̂k = Vk(TtkTk)
−1Ttky

Notice that this can be simplified as:

β̂k = Vk(ΣkUtUΣk)
−1ΣkUky

= VkΣ
−1
k Ut

ky

On problem set 5, you will show that when k is equal to p, the last
line is equal to the ordinary least squares solution.



The variance matrix of the regression vector can be calculated as:

Var(VkΣ
−1
k Ut

ky) = σ2 · VkΣ
−1
k Ut

kUkΣ
−1
k Vt

k

= σ2 · VkΣ
−2
k Vt

k

And the trace of this is given by:

tr
(
Varβ̂k

)
= σ2 · tr

(
VkΣ

−2
k Vt

k
)

= σ2 · tr
(
Σ−2
k

)
=

k∑
i=1

σ2

σ2
i



Therefore, we have:

tr
(
Var(β̂1)

)
≤ tr

(
Var(β̂2)

)
≤ . . . ≤ tr

(
Var(β̂p)

)
= tr

(
Var(β̂ols)

)
So PCR is another form of variance reduction.



Application of PCR to a single photo



Ridge vs. PCR: similarities

1. Both methods try to reduce variance by using the largest
singular values of the design matrix X.

2. Both have easy to compute, analytic solutions.
3. Efficient method for calculating the solution for multiple values

of the tuning parameter. PCR is just one regression for all k and
ridge uses the same SVD decomposition, so each λ is just a
single matrix multiplication.

4. Both are invariant to rotations of the data matrix X

5. Both are sensitive to the scale and means of the columns X;
typically a good idea to standardize these unless naturally on
the same scale to begin with (color pixels is one example)



Ridge vs. PCR: differences

1. Ridge smoothly shrinks the singular vectors whereas PCR just
throws out the worst

2. Ridge can be fit for any positive lambda, but there are only p
possible values for the tuning parameter in PCR

3. Ridge is, therefore, preferable when being used with a very
small λ to simply stabilize the solution rather than perform
drastic shrinkage

4. Because we do not know whether β lives in the first k principal
components, it is difficult to get any universal results on the
bias of PCR.

5. The principal components provide dimension reduction in
addition to shrinkage. The PCR can be preferable when you
have a large number of variables and but want to preserve some
sort of interpretability.

6. The principal components are also great for visualizations and
as inputs in other machine learning algorithms.



What’s next

Amazingly, we only have 4 more lectures before Thanksgiving break.

1. 11-09: Logistic regression revisited
2. 11-11, 11-16, 11-18: Lasso regression


