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Notes

– problem set 5 posted; due next class
– problem set 6, November 18th



Goals for today

– fixed PCA example from last time
– how to solve logistic regression via weighted least squares
– classification problem on image corpus



fixed PCA example from last time



solving logistic regression



GLMs

Recall that we define generalized linear models such that the mean
of y is some function of Xβ, rather than directly equal to it:

E(y|X) = g−1 (Xβ)

With g, called the link function, equal to some fixed and known
function.



Logistic regression

The logistic regression function uses g equal to the logit function to
describe a distribution with y ∈ {0, 1}. Specifically, we have the
following description of the statistical model:

E(y|X) = logit−1 (Xβ)

=
1

1 + e−Xβ



Now that we have discussed how to solve the ordinary least squares
equation, you may wonder how we would go about solving the
logistic regression problem.



Recall that the likelihood of the data point yi given its mean pi is
equal to:

Li(yi|pi) = exp
{
yi · log

(
pi

1− pi

)
+ log(1− pi)

}



There are two terms here that depend on pi in different ways:

Li(yi|pi) = exp
{
yi · log

(
pi

1− pi

)
+ log(1− pi)

}

The first term is simply equal to the projection of the regression
vector xtiβ.

We can write the second term using:

pi =
1

1 + e−xtiβ

1− pi =
e−xtiβ

1 + e−xtiβ

=
1

1 + extiβ

log(1− pi) = −1 · log(1 + ex
t
iβ)



We can then write the log-likelihood of the full model, in vector
form, as:

l(yi|xi, β) =
∑
i

(
yi · xtiβ − log(1+xtiβ)

)
= ytXβ − log(1 + eXβ)



To find the MLE estimator, we want to find zeros of the derivative of
the log-likelihood. The derivative is given by:

∇β l(yi|xi, β) = ∇ytXβ −∇ log(1 + eXβ)

= Xty−∇ log(1 + eXβ)

The second term can be calculated by writing the gradient out
component wise.



In other words, we see from a simple application of the chain rule
that:

∂

∂βk
log(1 + eXβ) =

1

1 + eXβ
· xtk · eXβ

Which can be simplified in terms of p:

1

1 + eXβ
· xtk · eXβ = xtkp

In vector form gives the gradient as:

∇ log(1 + eXβ) = Xtp



So now we have an explicit form of the gradient of the
log-likelihood:

∇β l(yi|xi, β) = Xty−∇ log(1 + eXβ)

= Xty− Xtp

= Xt(y− p)

We cannot simply set this to zero because p is a non-linear function
of X. However it does tell us that the residual in logistic regression
should be uncorrelated with the X matrix (just as was the case with
linear regression).



To find a numerical solution to the zeros of the function
∇β l(yi|xi, β), the Newton–Raphson method can be used.

The technique is best described in a series of illustractions.

http://euler.stat.yale.edu/~tba3/stat612/
lectures/lec16/img/NewtonIteration_Ani.gif

http://euler.stat.yale.edu/~tba3/stat612/lectures/lec16/img/NewtonIteration_Ani.gif
http://euler.stat.yale.edu/~tba3/stat612/lectures/lec16/img/NewtonIteration_Ani.gif


We saw that the scalar version of using Newton–Raphson to
determine the optimal values of f is given by (remember the
derivatives are one more than the illustration because we want
critical points rather than zeros of f):

β(k+1) = β(k) − f ′(β(k))

f ′′(β(k))

The multivariate version of Newton–Raphson applies the following
set of updates:

β(k+1) = β(k) − H−1(β(k))∇f (β(k))

Where H is the Hessian matrix of all second order partial derivatives.



What is the Hessian of the log-likelihood? The gradient was
Xt(y− p), so we can quickly see that the Hessian only depends on
the term Xtp.



In componentwise form, we see that:

∂2l(β)
∂βj∂βk

=
∂

∂βj

∑
i

xi,k · pi

=
∑
i

xi,k ·
∂pi
∂βj



The partial derivative of pi with respect to βj is given by the
following (it is just calculus with a clever grouping of terms at the
end):

∂pi
∂βj

=
∂

∂βj

1

1 + e−xtiβ

=
−1

(1 + e−xtiβ)2
· −1 · xi,j · e−xtiβ

= xi,j ·
(

1

1 + e−xtiβ

)
·

(
e−xtiβ

1 + e−xtiβ

)
= xi,j · pi · (1− pi)

= xi,j · Var(yi)

We don’t actually need the final line, but include it as it helps to give
some intutition to the next set of steps.



This now yields the Hessian as:

Hl(y|xi, β) = −XtDX

Where D is an n-by-n diagonal matrix with components equal to
pi · (1− pi).



And therefore the Newton-Raphson step is given by:

β(k+1) = β(k) − H−1(β(k))∇f (β(k))

= β(k) + (XtDX)−1Xt(y− p(k))

Look familiar?



We can re-write this, for a suitable z, as:

β(k+1) = (XtDX)−1(XtDX)β(k) + (XtDX)−1Xt(y− p(k))

= (XtDX)−1XtD(Xβ(k) + D−1(y− p))

= (XtDX)−1XtDz

So solving the logistic regression amounts to solving a sequence of
weighted least squares models:

β(k+1) = argmin
b

{
||D1/2(z− Xb)||22

}



Notice that the scheme weights observations more if they have
predicted probabilities close to 0 or 1. Does this make sense based
on our other lecture?

Another interpretation is that it put the highest weight on points
with the lowest variance.



This method generalizes to generalized linear models with
exponential families, and has some fairly deep connections to
Fischer information.



Why is this important?

1. Explains many of the results on problem set 4; in particular
when linear and logistic regression can be expected to give
similar predictions and when they don’t.

2. Helps explain and address convergence properties in
generalized linear models.

3. The logistic regression version of the normal equations can be
used to establish large sample theory convergence results.

4. Gives us an idea of how the geometric and analytic concepts
underlying ridge regression, principal component analysis, and
(later) lasso regression connect to generalized linear models.


