
Problem Set 03
Linear Models – Fall 2015

Due date: 2015-10-07

Problems sets are due at the start of class on the due date. Please hand write or type up and print
the solutions; we will not accept e-mail solution sets except in exceptional circumstances. You
may discuss problem sets with others, but must write up your own solutions. This means that
you should have no need to look at other’s final written solutions. Many of these problems come
from a variety of textbooks, which are referenced in the problems. These are for citation purposes
and not because you will need to consult the text itself (though you may feel free to do so).

I. General linear model

Consider the case where the spherical errors assumption is violated, and the variance of ϵ is
instead given by:

E(ϵϵt|X) = σ2V (X) (1)

For some matrix V (X). We decompose the variance into σ2 and V (x) because in what follows
we assume that V (x) is known beforehand but σ2 is estimated from the data. Using the Cholesky
decomposition of V −1, where V −1 = CtC , consider the transformed variants of X , ϵ and y:

ỹ = Cy (2)
X̃ = Cx (3)
ϵ̃ = Cϵ (4)

It is known (see Fumio Hayashi, section 1.6) that the transformed model ỹ = X̃β + ϵ̃ follows
all of the standard linear model assumptions if the original follows all but the spherical errors
assumption. Transforming the model back into the original space yields the generalized least
squares estimator:

β̂GLS = (X tV −1X)−1X tV −1y (5)

1. Using the transformed model, derive formulae in terms of X , y, V , and s2 for the confidence
and prediction intervals in the general linear model.

2. Download the cleaned 2007ASAflight data (euler.stat.yale.edu/~tba3/stat612/psets/
pset03/data/airline2007_pset03.Rds). I have selected flights arriving at the top 25 airports.
The dataset is also divided into three random, evenly sized groups: I, II, and III. Assume that V (X)
is a diagonal matrix that depends only on the arrival airport.

Estimate the form of V (X) using the data from group I and fit the following linear model to the
data in group II using both ordinary least squares and the generalized model suggested by your
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estimate of V (X) (Hint: V (X) is likely too large to construct directly on your machine; either
use sparse matricies or do the matrix multiplication manually):

arrDelayi = desti + depDelayi + ϵi (6)

Use constrast sums for the arrival airport (i.e., no intercept) term. How different are the estimators
β̂OLS and β̂GLS?

Now, on group III construct two-sided, 95%-prediction intervals for the arrival delays using both
estimates of β. Calculate the error rate (proportion of observations outside of the prediction
inveral) by airport. How much do these differ between the two estimators?

3. Take all of the flights that arrived at ORD (Chicago O’hare) airport on 2007-01-11, and order
the data from the earliest arrival to the latest arrival. Fit the following linear model on the data
and plot a time series of the residuals.

arrDelayi = β0 + β1 · depDelayi + ϵi (7)

What assumptions of the classical regression does your plot suggest are violated in this model?

A common description of this type of model is that the covariance of the errors follows the fol-
lowing:

E(ϵiϵj) = σ2 · e−ϕ|i−j| (8)

Using the estimate of σ2 from the original regression model, derive a reasonable estimate of ϕ
from the model output (Hint: look at the case where |i− j| is equal to 1 and find the ϕ that yields
the sample covariance).

Now, using the predicted ϕ, fit the ordinary least squares and generalized least squares model
from arrivals to ORD (Chicago O’hare) airport on 2007-02-13. How much do the two estimated β̂
differ from one another? Now find the predicted values ŷ for the two estimates of β. How much
do these differ? Which is a better fit of the data?

2 of 3



II. Breaking classical linear model assumptions

In these problems, we ask you to run simulations in R to estimate the effect of violating various
assumptions in the classical multivariate linear model presented in class. For these problems,
please attatch your R code as well as the written solutions.

1. Normality Construct a linear model with p = 5, n = 1000, X generated by independent
random normals, and β = (1, 1, 1, 0, 0). For the following error distributions, generate an inde-
pendent noise vector ϵ and set y = Xβ + ϵ (with no intercept):

1. normal distribution with σ = 1, rnorm

2. continuous uniform distribution from −2 to 2, runif

3. t-distribution with 2 degrees of freedom, rt

4. discrete uniform over the set {−1, 1}, sample

5. standard Cauchy distribution, rcauchy

For each, calculate the probability that the standard, two-sided, 95%-confidence interval (which
assumes normality) for β1 covers the true β1 by iterating the simulation (about 20000 times each
should be enough). Use a fixed X matrix over the iterations. How do you feel about the impor-
tance of the normality assumption given this simulation?

2. Spherical errors Consider the following model for the error terms (setting ϵ0 = 0 for the base
case) for some ϕ > 0:

δt ∼i.i.d. N (0, 1), t = 1, . . . , n (9)
ϵt = ϕ · ϵt−1 + δt (10)

Write out the variance-covariance matrix of ϵ for n = 3.

Now, again consider a linear model with p = 5, n = 1000, X generated by independent random
normals, and β = (1, 1, 1, 0, 0) using the constructed ϵ. For ϕ equal to 0.5, 0.9, and 1 run a sim-
ulation to determine the probability that the confidence interval for β1 falls within the standard,
two-sided, 95%-confidence interval (which assumes normality) for β1. (You may need a double
loop for this, so we only need 2500 iterations here). How do you interpret these results?

3. Endogeneity Finally, consider the autoregression model (we intialize Y0 = 0):

Yt = βYt−1 + ϵt (11)

Where ϵ is a random variable with a standard multivariate normal distribution. Why does this
model violate strict endogeneity?

Run a simulation with n = 1000 and β equal to 0.5, 0.9, and 1. Determine the expected bias of
the ordinary least squares estimator (with no intercept) for β in each of these cases. How do you
interpret these results?
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