
Problem Set 07
Linear Models – Fall 2015

Due date: 2015-12-16

Please handwrite or type up and print the solutions; wewill not accept e-mail solution sets except
in exceptional circumstances. You may discuss problem sets with others, but must write up your
own solutions. This means that you should have no need to look at other’s final written solutions.
Many of these problems come from a variety of textbooks, which are referenced in the problems.
These are for citation purposes and not because you will need to consult the text itself (though
you may feel free to do so).

Please hand your solutions in to the office at 24 Hillhouse Avenue. There should be a
specific folder for the class. Make sure to deliver it by 4pm on the due date.

1. Consider the following form of the elastic net:
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Notice that there is a slightly different scaling of the problem from that used in my lecture notes.

Calculate the partial subdifferential of R(β) with respect to βj . As in the lasso case, you will
probably need to write this as a conditional on the sign of βj .

2. Coordinate descent is a method for finding the minimizer of a multidimensional convex func-
tion. It cyclically optimizes the problem separately over each coordinate until convergence. So,
for example, to solve R(β) above, we start with an initial guess of the solution, β(0), and then
solve:
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Which continues until some β(k) is reached that either has converged or reached a maximum
number of iterations.

Write down the formula (you may need multiple to handle different cases depending on signs
and magnitudes) for calculating β

(k)
j . It may be useful to use the notation:

β̃i =

{
β
(k+1)
i i < j

β
(k)
i i ≥ j

3. Write an R function getBetaEnet(X, y, alpha, lambda, iter) which applies coordinate
descent to the formula you developed in question 2 to solve the elastic net for the given α and λ
values. It should apply coordinate descent to all the coordinates iter times; you do not need to
write a more complex stopping criterion.

4. Take the data from from here:

http://www.stat.yale.edu/~tba3/stat612/psets/pset07/data/pset07_X.Rds
http://www.stat.yale.edu/~tba3/stat612/psets/pset07/data/pset07_y.Rds

And run the following:

> library(glmnet)
> out <- glmnet(X, y, intercept=FALSE, standardize=FALSE, nlambda=5, alpha=0.5)

Apply your function from question 3 to the 5 values of lambda as given above (use 25 iterations).
Does it produce similar results to glmnet? Compare both the mean squared error in β as well as
whether both techniques set the same variables exactly to zero. If they do not agree, explain why
you think that might be the case. If they do agree well, determine the approximate minimum
number of iterations needed to converge for the middle lambda value.
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