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▶ Problem set notes:
▶ brute force okay for implementation question
▶ can use other libraries in the prediction and data analysis questions
▶ consider FNN (R) or or sklearn.neighbors (Python)

▶ Office hours (more possibly to come):
▶ Taylor Arnold – Mondays, 13:00 - 14:15, HH 24, Office 206 (by appointment)
▶ Yu Lu – Tuesdays, 10:00-12:00, HH 24, Library
▶ Jason Klusowski – Thursdays, 19:00-20:30, HH 24
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Ordinary�least�squares

The multivariate linear regression model is given by:

yi = x1,iβ1 + x2,iβ2 + · · ·+ x1,pβp + ϵi
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A sample can be re-written in terms of the vector xi (the vector of covariates for a single
observation):

yi = xt
iβ + ϵi
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In matrix notation, we can write the linear model simultaneously for all observations:
y1
y2
...

yn

 =


x1,1 x2,1 · · · xp,1

x1,2
. . . xp,2

...
. . .

...
x1,n x2,n · · · xp,n




β1

β2

...
βp

+


ϵ1
ϵ2
...
ϵn



Which can be compactly written as:

y = Xβ + ϵ
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For reference, note the following equation

y = Xβ + ϵ

Yields these dimensions:

y ∈ Rn

X ∈ Rn×p

β ∈ Rp

ϵ ∈ Rn
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Least squares

To estimate the least squares solution, which is again the MLE for independent normal
errors, we see that:

β̂ ∈ arg min
b∈Rp

{
||y − Xb||22

}
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It will be helpful to re-write the sum of squares as:

||y − Xβ||22 = (y − Xβ)t(y − Xβ)

= (yt − βtXt)(y − Xβ)

= yty − ytXβ − βtXty + βtXtXβ

= yty − 2ytXβ + βtXtXβ
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Normal Equations

In order to find the minimum of the sum of squares, we take the gradient with respect to
β and set it equal to zero.

Recall that, for a vector a and symmetric matrix A :

∇βatβ = a
∇ββ

tAβ = 2Aβ

This gives the gradient of the sum of squares as:

∇β ||y − Xβ||22 = ∇β

(
yty − 2ytXβ + βtXtXβ

)
= 2XtXβ − 2Xty
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Setting this equal to zero gives a set of p equations called the normal equations:

XtXβ̂ = Xty
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Maximum or Minimum?

To determine whether the normal equations give a local minimum, maximum, or saddle
point, we can calculate the Hessian matrix.

This is a p × p matrix giving every
combination of the second partial derivatives:

Hf(β) =



∂2f
∂β1∂β1

∂2f
∂β1∂β2

· · · ∂2f
∂β1∂βp

∂2f
∂β2∂β1

. . . ∂2f
∂β2∂βp

...
. . .

...
∂2f

∂βp∂β1

∂2f
∂βp∂β2

· · · ∂2f
∂βp∂βp


If the Hessian is positive definite (xtHx ≥ 0) at a critical point, then the critical point is a
local minimum.
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Looking at the gradient of the sum of squares:

∇β ||y − Xβ||22 = 2XtXβ − 2Xty

We can see that the Hessian is simply:

Hβ ||y − Xβ||22 = 2XtX

Why is this positive definite?

vt (2XtX
)

v = 2
(
vtXtXv

)
= 2||Xv||22
≥ 0
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Back to the normal equations themselves, notice that if the matrix XtX is invertible, we
can ‘solve’ the normal equations as:

XtXβ̂ = Xty
β̂ = (XtX)−1Xty

This is not a good way to solve the normal equations numerically, but is a useful
theoretical form.
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Ridge�regression

The ridge regression estimator is the solution to the following modified least squares
optimization problem for some value of λ > 0.

β̂ridge = arg min
b

{
||y − Xb||22 + λ||b||22

}
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Why the ridge penalty?

1. The equation shrinks the coefficients towards zero, adding some bias but reducing
the variance of the estimator.

2. Using the ℓ2-norm keeps the equation rotationally invariant.

3. Ridge regression has an analytical solution.
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To see this write the criterion as a matrix equation:

(y − Xb)t(y − Xb) + λbtb = yty + btXtXb − 2ytXb + λbtb

And take its derivative:

∂

∂β

(
yty + btXtXb − 2ytXb + λbtb

)
= 2XtXb − 2Xty + 2λb

17/32



To see this write the criterion as a matrix equation:

(y − Xb)t(y − Xb) + λbtb = yty + btXtXb − 2ytXb + λbtb

And take its derivative:

∂

∂β

(
yty + btXtXb − 2ytXb + λbtb

)
= 2XtXb − 2Xty + 2λb

17/32



Setting this to zero yields

2XtXβ̂ + 2λβ̂ = 2Xty
(XtX + Ipλ)β̂ = Xty

β̂ = (XtX + Ipλ)
−1 · Xty

This is a useful analytical form, though as with least squares we would generally not
invert the matrix directly but instead use a stable matrix decomposition.
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Computational�issues

How can we estimate the regression vector using a technique such as ordinary least
squares

β̂ols = arg min
b

{ n∑
i=1

(yi − xt
ib)2

}
,

When we have a dataset size grows larger than the available memory?
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At first glance this seems computationally very difficult as we are trying to minimize a
summation with one component per observation.

However, recall that the ordinary least squares solution can be computed by:

β̂ols = (XtX)−1Xty.
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Now, assume that the data matrix X is broken by rows into K different chunks:

X =


XB1

XB2

...
XBK



The Gram matrix XtX can then be computed by summing up the Gram matrices of the
individual chunks:

XtX =
K∑

i=1

Xt
BiXBi .
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If the vector y is broken in to the same set of chunks, and corresponding blocks are
stored next to one another, such as:

X =


XB1

XB2

...
XBK

 , y =


yB1

yB2

...
yBK


The exact same technique works for computing the correlations Xty.

Xty =
K∑

i=1

Xt
BiyBi .
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So, we can compute the least squares solution:

β̂ols = (XtX)−1Xty

by only working with chunks of the data. Specifically:

β̂ols =

( K∑
i=1

Xt
BiXBi

)−1

·

( K∑
i=1

Xt
BiyBi

)

This means that we can either work in parallel or with a single process that only reads a
small chunk of the data into memory at any given time.
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The whole operation only requires, at most, memory for and transmission of K · (p2 + p)
values.

By applying the summation iteratively via folds, this can be done by only holding
2(p2 + p) values in memory.
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More generally, the following 6 quantities can be easily computed over chunks of the
data set:

Gram matrix = XtX
correlation vector = Xty

column sums = Xt1n

response sums = yt1n

response variance = yty
sample size = 1t

n1n

It turns out that these alone are sufficient to calculate many classical and modern
estimation techniques.
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Ordinary�least�squares

Not only can we solve ordinary least squares,

||y − Xβ||22 = yty + βtXtXβ + 2ytXβ,

But we can also calculate an estimator of the noise variance:

σ̂2 =
1

n − p
(
yty + βtXtXβ + 2ytXβ

)
And compute standard errors:

S.E(β̂j) =

√
σ̂2(XtX)−1

jj
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Ridge�regression

The objective function in Ridge regression is also easily written in terms of these
quantities:

||y − Xβ||22 + λ||β||22 = yty + βtXtXβ + 2ytXβ + λβtβ

With similar formulas for standard errors.
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Classification�problems

Many (most?) of the tasks we’ll consider this semester are actually classification tasks.
That is, the values yi that we are trying to predict are class labels rather than a
continuous response.
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Classification�problems, cont.

When we have two classes, we can encode these with numerical values. For example,
either

yi =

{
0
1

Or,

yi =

{
−1
+1
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Classification�problems, cont.

Methods for continuous responses can be used as is (whether the theory extends to
discrete data is a different matter entirely). The values of ŷ can be interpreted as
probabilities. If we need to estimate the actually class label of y, we can use some
threshold:

ŷclass
i =

{
0, ŷi < α
1, else

For some cutoff value α.

Some classification methods such as knn can directly produce class estimates; for
example, simply using whichever class label is most common near xnew.
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Classification�problems, cont.

How can we evaluate how well a classification algorithm works, say when doing cross
validation? Mean squared error on the predicted probabilities can work well in many
cases; using statistical deviance (based on the log-likelihood) can also make sense in
certain contexts.

Another method, which we will largely use in this course, is to instead evaluate the
actually class predictions themselves using the misclassification�rate. On the validation
set this can be written as:

MCR(k) =
#
{

ŷclass
i ̸= yi

}
i∈V

#V
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Multiclass�classification

It will also be common that we will have values of yi that can come from more than two
classes. For example, tagging a word as a part of speech or labeling an image in the
CIFAR-10 corpus.

A few techniques such as knn can directly solve the multiclass problem, but unlike the
two class problem, we cannot directly code the multiclass problem as a regression
problem. There are two generic methods for overcoming this deficiency: one-vs.-rest
and one-vs.-one classification.

Like classification, there are several techniques for evaluating the fit of a multiclass
problem. Misclassification rate is also again the simplest and can be defined exactly as it
was before.
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