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» Problem set notes:

» brute force okay for implementation question
» can use other libraries in the prediction and data analysis questions
» consider FNN (R) or or sklearn.neighbors (Python)

» Office hours (more possibly to come):

» Taylor Arnold — Mondays, 13:00 - 14:15, HH 24, Office 206 (by appointment)
» Yu Lu — Tuesdays, 10:00-12:00, HH 24, Library
» Jason Klusowski — Thursdays, 19:00-20:30, HH 24
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Ordinary least squares
The multivariate linear regression model is given by:

Yi = 2,1 + 22,82 + - + T1pBp + €
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A sample can be re-written in terms of the vector z; (the vector of covariates for a single
observation):

yi = o0 + €
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In matrix notation, we can write the linear model simultaneously for all observations:

Y1 il &2l P,1 b1 €1
. .

-2 I A , Tpo B2 N 2
€

Yn Blo e °°° Be Bp n
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In matrix notation, we can write the linear model simultaneously for all observations:

% @ %
m 11 22,1 .1
2 _ | m2 Tp,2
Yn Tin T2,n Tp,n

Which can be compactly written as:
y=XB+e

A1
B2

o
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For reference, note the following equation
y=XB+e¢
Yields these dimensions:
ye R
X e R™P

B € RP
e € R"
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Least squares

To estimate the least squares solution, which is again the MLE for independent normal
errors, we see that:

36 argmin{”y— XbH%}
bERP
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[t will be helpful to re-write the sum of squares as:

ly— XBII3 = (y—XB)'(y— XB)
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[t will be helpful to re-write the sum of squares as:

ly—XBll3 = (y—XB)'(y— XB)
= (y' - B'X")(y— XB)
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[t will be helpful to re-write the sum of squares as:

ly—XBll3 = (y—XB)'(y— XB)
= (4 - B'X")(y— XB)
= yly—y'XB— B'X'y+ B X' XB
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[t will be helpful to re-write the sum of squares as:

ly—XBll; = (y—XB)'(y— XB)

(y" = B'X")(y — XB)
y'y—y'XB — B' X'y + B X' XP
= yy—2/XB+ B X' XP
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Normal Equations

In order to find the minimum of the sum of squares, we take the gradient with respect to

B and set it equal to zero.

Recall that, for a vector @ and symmetric matrix A :

Vgad'B=a
VsBiAB =248
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Normal Equations

In order to find the minimum of the sum of squares, we take the gradient with respect to
B and set it equal to zero.

Recall that, for a vector @ and symmetric matrix A :

Vga'B=a
VsBiAB =248

This gives the gradient of the sum of squares as:

Vislly— XBlI3 = Vs (y'y — 2y"XB + ' X" XB)
= P 8 — QXTI,/
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Setting this equal to zero gives a set of p equations called the normal equations:

X'XB = Xty
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Maximum or Minimum?

To determine whether the normal equations give a local minimum, maximum, or saddle
point, we can calculate the Hessian matrix.
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Maximum or Minimum?

To determine whether the normal equations give a local minimum, maximum, or saddle
9 b

point, we can calculate the Hessian matrix. This is a p x p matrix giving every

combination of the second partial derivatives:

’f 9 .. o%f
0B10B1  0B10B2 0B10B,
Hf() = | o708 98298,
o o .. 9
98,08, 9B,0Bs 38,08,

If the Hessian is positive definite (z/Hz > 0) at a critical point, then the critical point is a
local minimum.
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Looking at the gradient of the sum of squares:

Velly— XBII3 = 2X' X3 — 2X*y
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Looking at the gradient of the sum of squares:
Vslly— XBI[3 = 2X'XB — 2X*y
We can see that the Hessian is simply:

Hglly— X85 = 2X'X
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Looking at the gradient of the sum of squares:
Vslly— XB|l3 = 2X° X6 — 2X"y
We can see that the Hessian is simply:
Hg|ly — XB|l5 = 2X'X

Why is this positive definite?
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Looking at the gradient of the sum of squares:
Vslly— XB|l3 = 2X° X6 — 2X"y
We can see that the Hessian is simply:
Hg|ly — XB|l5 = 2X'X
Why is this positive definite?

ot (2XtX) D=2 (thth)
= 2[| X[3
>0
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Back to the normal equations themselves, notice that if the matrix X*X is invertible, we
can ‘solve’ the normal equations as:

X‘fXB: Xty
B=(X'X)"' X'y
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Back to the normal equations themselves, notice that if the matrix X*X is invertible, we
can ‘solve’ the normal equations as:

XtXB: Xty
B=(X'X)"' X'y

This is not a good way to solve the normal equations numerically, but is a useful
theoretical form.
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Ridge regression

The ridge regression estimator is the solution to the following modified least squares
optimization problem for some value of A > 0.

Bridge = arg;nin{Hy — X0l[3 + Allol13}
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Why the ridge penalty?

1. The equation shrinks the coefficients towards zero, adding some bias but reducing
the variance of the estimator.
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Why the ridge penalty?
1. The equation shrinks the coefficients towards zero, adding some bias but reducing

the variance of the estimator.

2. Using the #3-norm keeps the equation rotationally invariant.
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Why the ridge penalty?

The equation shrinks the coefficients towards zero, adding some bias but reducing
the variance of the estimator.

Using the £3-norm keeps the equation rotationally invariant.

Ridge regression has an analytical solution.

16,32



To see this write the criterion as a matrix equation:

(y— Xb)'(y — Xb) + Ab'b = y'y + b' X' Xb — 24" Xb + \b'D
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To see this write the criterion as a matrix equation:

(y— Xb)'(y — Xb) + Ab'b = y'y + b' X' Xb — 24" Xb + \b'D

And take its derivative:

g%(¢y+wxuw—2¢Xb+AN®::zva—2X@+2Ab
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Setting this to zero yields

2X*XB + 208 = 2 Xty
(XX + L,A)B = X'y
B= XX+t Xty
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Setting this to zero yields

2X*XB + 208 = 2 Xty
(XX + L,A)B = X'y
B= XX+t Xty

This is a useful analytical form, though as with least squares we would generally not
invert the matrix directly but instead use a stable matrix decomposition.
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Computational issues

How can we estimate the regression vector using a technique such as ordinary least
squares

n

Bots = argmin { > (y; — 24b)® ¢,
b

i=1

When we have a datasel size grows larger than the available memory?
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At first glance this seems computationally very difficult as we are trying to minimize a
summation with one component per observation.

However, recall that the ordinary least squares solution can be computed by:

Bols - ()(tX)_l‘)(ty
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Now, assume that the data matrix X is broken by rows into K different chunks:

i,
505
x=| .

XB

K
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Now, assume that the data matrix X is broken by rows into K different chunks:

XB,

XB,
X= .
XB,
The Gram matrix X*X can then be computed by summing up the Gram matrices of the

individual chunks:

K
X'X=Y XbXgp,.

=l
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If the vector y is broken in to the same set of chunks, and corresponding blocks are

stored next to one another, such as:

XBI YB,
X = XB2 - yl?z
XBK YBx

he exact same technique works for computing the correlations X'y.

K
)(ty = Z)(tBini'

i=1

22/32



So, we can compute the least squares solution:

Bols - (XtX)ilXty

by only working with chunks of the data. Specifically:

R K L K
Bots = Z ‘XthXBi : Z XtBinz‘
=1

i=1

This means that we can either work in parallel or with a single process that only reads a
small chunk of the data into memory at any given time.
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The whole operation only requires, at most, memory for and transmission of K- (p? + p)
values.

By applying the summation iteratively via folds, this can be done by only holding
2(p* + p) values in memory.
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More generally, the following 6 quantities can be easily computed over chunks of the
data set:

Gram matrix = X' X
correlation vector = X'y
column sums = X'1,,
response sums = ytln
response variance = y'y

sample size = 111,

It turns out that these alone are sufficient to calculate many classical and modern
estimation techniques.
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Ordinary least squares

Not only can we solve ordinary least squares,
2 ¢ t t
ly — XBlI5 = 'y + B°X*XB + 2y XB,
But we can also calculate an estimator of the noise variance:

1
= (v'y+ B*X'XB + 2y° XB)

And compute standard errors:
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Ridge regression

The objective function in Ridge regression is also easily wrilten in terms of these
quantities:

lly — X813 + M|Bl3 = v'y + B X' XB + 2y' XB + \3'S

With similar formulas for standard errors.
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Classification problems
Many (most?) of the tasks we’ll consider this semester are actually classification tasks.

That is, the values y; that we are trying to predict are class labels rather than a
continuous response.
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Classification problems, cont.

When we have two classes, we can encode these with numerical values. For example,
either

Or,
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Classification problems, cont.

Methods for continuous responses can be used as is (whether the theory extends to
discrete data is a different matter entirely). The values of j can be interpreted as
probabilities. If we need to estimate the actually class label of 3, we can use some
threshold:

/\glass _ 03 /y\z <
v 1, else

For some cutoff value «.
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Classification problems, cont.

Methods for continuous responses can be used as is (whether the theory extends to
discrete data is a different matter entirely). The values of j can be interpreted as
probabilities. If we need to estimate the actually class label of 3, we can use some
threshold:

/\glass _ 03 /y\z <
v 1, else

For some cutoff value «.

Some classification methods such as knn can directly produce class estimaltes; for
example, simply using whichever class label is most common near ,¢q.
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Classification problems, cont.

How can we evaluate how well a classification algorithm works, say when doing cross
validation? Mean squared error on the predicted probabilities can work well in many
cases; using statistical deviance (based on the log-likelihood) can also make sense in
certain contexts.

Another method, which we will largely use in this course, is to instead evaluate the
actually class predictions themselves using the misclassification rate. On the validation
set this can be written as:

~class .
AMM@=#wi#iMEV
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Multiclass classification
It will also be common that we will have values of y; that can come from more than two

classes. For example, tagging a word as a part of speech or labeling an image in the
CIFAR-10 corpus.
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Multiclass classification

It will also be common that we will have values of y; that can come from more than two

classes. For example, tagging a word as a part of speech or labeling an image in the
CIFAR-10 corpus.

A few techniques such as knn can directly solve the multiclass problem, but unlike the
two class problem, we cannot directly code the multiclass problem as a regression
problem. There are two generic methods for overcoming this deficiency: one-vs.-resl
and one-vs.-one classification.
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Multiclass classification

It will also be common that we will have values of y; that can come from more than two
classes. For example, tagging a word as a part of speech or labeling an image in the
CIFAR-10 corpus.

A few techniques such as knn can directly solve the multiclass problem, but unlike the
two class problem, we cannot directly code the multiclass problem as a regression
problem. There are two generic methods for overcoming this deficiency: one-vs.-resl
and one-vs.-one classification.

Like classification, there are several techniques for evaluating the fit of a multiclass

problem. Misclassification rate is also again the simplest and can be defined exactly as it
was before.
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