L.ecture 05
Additive Models

01 February 2016

Taylor B. Arnold
Yale Statistics
STAT 365/665

Yale

1/52

» Problem set notes:

» Problem set 1 is due on Friday at 1pm!

» brute force okay for lmplementa’non queslion

» can use other libraries in the prediction and data analysis questions
» consider FNN (R) or or sklearn.neighbors (Python)

» Office hours:

Taylor Arnold — Mondays, 13:00 - 14:15, HH 24, Office 206 (by appointment)
Elena Khusainova — Tuesdays, 13:00-15:00, HH 24, Basement

Yu Lu — Tuesdays, 19:00-20:30, HH 24, Basement

Jason Klusowski Thursdays, 19:00-20:30, HH 24

vV vy VvYyy

» If you have any questions on the problem set, please ask or send them prior to
Thursday night

2/52

Factors

Canada
USA
USA

Mexico

Canada

Canada

USA

Mexico

Canada

1

O, OOO

Mexico

0

C OO =OO

L

H OOOMEMFEOW

-~

3/52

Higher dimensional problems

So far, we have only considered non-parametric estimators where the predictor variable
z; is one dimensional. How can we extend this to higher dimensional models?

4/52

Higher dimensional problems

So far, we have only considered non-parametric estimators where the predictor variable
z; is one dimensional. How can we extend this to higher dimensional models?

Well, the knn and kernel smoother estimators only depend on the distance matrix

between points. Our efficient computational methods breakdown in higher dimensions,
but the theoretical idea of these need no modification.

4/52

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classificati ple in two di ions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0,000008 = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by magjority vote gst the 15 est neighb

5/52

1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification example in two dunermom as in Fig-
ure 2.1, The classes are coded as a binary variable (BLUE = 0,0 ©=1), and
then predicted by 1-nearest-neighbor classification. 6 /52

Higher dimensional problems, conlt.

What happens if we try to do basis expansion for linear regression in higher dimensions?

7/52

Higher dimensional problems, conlt.

What happens if we try to do basis expansion for linear regression in higher dimensions?

For clarity, leUs assume we just have two dimensions labeled z and z. We need a basis
that looks like:

m m .
Y= > Bimrtid + €

§=0 k=0

So the number of coordinates grows to m? coefficients in order to fit arbitrary m
dimensional polynomials.

7/52

Higher dimensional problems, conlt.
What happens if we try to do basis expansion for linear regression in higher dimensions?

For clarity, leUs assume we just have two dimensions labeled z and z. We need a basis
that looks like:

m m

Y= > Bimrtid + €

§=0 k=0

2

So the number of coordinates grows to m? coefficients in order to fit arbitrary m

dimensional polynomials.
For p dimensions, we’ll need a total mP coefficients; a quickly unfeasible task.

Regularization and keeping m small can help, but still makes this task hard for anything
that would approximate a reasonably complex non-linear surface.

7/52

Higher dimensional problems, cont.

Lowess, local polynomial regression, can be fit in the same manor as the linear model in
higher dimensions. We can fix the order of the polynomial to be m = 1 while still
capturing global non-linearity; therefore we can still use this technique in higher
dimensions.

8/52

Additive models

One way to deal with the problem of basis expansion in higher dimensions is to assume
that there are no interaction between the variables. This leads to a model such as:

Yi = g1(2i1) + g2(2i2) + - + gp(Tip) + €

These are known as additive models.

9/52

Additive models, cont.

Notice that the additive model cannot be defined uniquely as we can add a constant to
one of the g;(-) functions and subtract the same constant from another function gi(-). In
order to remedy this, one usually instead writes an explicil intercepl lerm:

Yi=a+ gi(zi1) + g2(zi2) + - + gp(Tip) + €

And constrains:

Z gi(zik) =0
k

For all values of k.

10/52

Computing Additive models

The primary algorithm used for computing additive models is called the backfitting
algorithm. It was originally used for additive models by Leo Breiman and Jerome
Friedman:

Breiman, Leo, and Jerome H. Friedman. “Estimating optimal transformations for
multiple regression and correlation.” Journal of the American statistical Association
80.391 (1985): 580-598.

11/52

Computing Additive models, cont.

The algorithm can be compactly described as:
Data: pairs of data {(X;, v;)} 7,
Result: Lstimates @ and g;, j={1,2,...,p}
initialize & = % > s Ui» g5 =055
while not converged do
for j=1 to p do
Tij < Yi— a4 — Zk#@k(fﬂik)
G+ S ({(ms rp) iy)
95 95— 7 22i95(wy)
end
end

For some smoother function S and stopping criterion.

12/52

Computing Additive models, cont.

For the smoothing function &, we can use any of the algorithms we have already studied.
LLocal polynomial regression is a popular choice.

13/52

Computing Additive models, cont.

For the smoothing function &, we can use any of the algorithms we have already studied.
LLocal polynomial regression is a popular choice.

Notice that we can also blend the additive model with higher dimensional smoothers,
particularly if we know that a small set of variables may have interactions with each other

even though most variables do not:

Yi =+ g1(21, Ti2) + g3(x5,3) + - + gp(Tip) + €5

13/52

Computing Additive models, cont.

There are two popular R packages for fitting additive models. Either mgev:

https://cran.r-project.org/web/packages/mgcv

Or gam:

https://cran.r-project. org/web/packages/qgam

14/52

https://cran.r-project.org/web/packages/mgcv
https://cran.r-project.org/web/packages/gam

Computing Additive models, cont.

There are two popular R packages for fitting additive models. Either mgev:

https://cran.r-project.org/web/packages/mgcv

Or gam:

https://cran.r-project. org/web/packages/qgam

There are nol as many oplions for python. The best I know of'is in
statsmodels.sandbox.gam as AdditiveModel.

14/52

https://cran.r-project.org/web/packages/mgcv
https://cran.r-project.org/web/packages/gam

What’s wrong with linear regression?
At this point you may wonder why linear regression seems to have trouble in higher

dimensions compared to the local methods. In truth, all of these techniques have trouble
with high dimensional spaces; it is just that the others hide this fact in their definitions.

15/52

What’s wrong with linear regression?
At this point you may wonder why linear regression seems to have trouble in higher
dimensions compared to the local methods. In truth, all of these techniques have trouble

with high dimensional spaces; it is just that the others hide this fact in their definitions.

The problem is the curse of dimensionality: When we have high dimensional spaces,
datasets look sparse even when the number of samples is very large.

15/52

What’s wrong with linear regression?
At this point you may wonder why linear regression seems to have trouble in higher
dimensions compared to the local methods. In truth, all of these techniques have trouble

with high dimensional spaces; it is just that the others hide this fact in their definitions.

The problem is the curse of dimensionality: When we have high dimensional spaces,
datasets look sparse even when the number of samples is very large.

Dealing with this is going to be the motivating problem in machine learning for the
remainder of the course.

15/52

DATA ANALYSIS

16,52

Description

Today we are going to look al housing price dala, taking from the American Communily
Survey and prepared by Cosma Shalizi:

http://www.stat.cmu. edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv

The data list aggregate statistics for census tracts.

17/52

http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv

Let’s first read in the data and look at all of the available variables.

> x <- read.csv("data/CAPA.csv",

> names (x) <- tolower (names(x))
> str(x)

'data.frame':

©“

B N P B B P PP PL B B P

X
geo.id2

statefp

countyfp

tractce

population
latitude

longitude
geo.display.label
median_house_value
total_units
vacant_units
median_rooms

11275 obs.

of

as.is=TRUE)

34 variables:

int
num
int
int
int
int
num
num
chr
int
int
int
num

123456789 10

6e+09 6e+09 6e+09 6e+09 6e+09

6 6 6 6 66 66 6 6

1111111111

400100 400200 400300 400400 400500

2937 1974 4865 3703 3517 1571 4206 3594 2302 5678
37.9 37.8 37.8 37.8 37.8

-122 -122 -122 -122 -122
"CensusTract 4001, ,Alameda ,County, California™"
NA 909600 748700 773600 579200 439300 369800
1425 929 2655 1911 1703 781 1977 1738 1202 2665
162 37 134 68 71 65 236 257 80 500

6.5 6 4.6 5 4.5 4.8 4.3 4.3 4.4 4.6

18/52

B D P P BB PP PR DD D DL LD D P L L LB

mean_household_size_owners

mean_household_size_renters:

built_2005_or_later
built_2000_to_2004
built_1990s
built_1980s
built_1970s
built_1960s
built_1950s
built_1940s
built_1939_or_earlier
bedrooms_0

bedrooms _1

bedrooms_2

bedrooms_3

bedrooms_4
bedrooms_5_or_more
owners

renters
median_household_income
mean_household_income

num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
int
int

45 2.04 2.66 2.58 2.72 2.17 2.7 2.75
66 2.19 1.72 2.18 2.15 1.93 1.92 2.08
0
2

.02 2.53 2.
1.81 1.

000 01

.2 0 0.2 0.200.6 4.1 2.2 2.2

50 902.31.31.11.2 1.8 1.6 0.6 0

.5

3
o il
5

w o o
0 01 W
w NN
S O
W © -
U'I(A)O

11.2

\IOW[\J

4
.8
3
9

w
©
o0 NN

1.8 oo
14.7 8 5

NN 0N

Bo o
3. 4.
5 5.
4 1
1 .3

4
1
6.
9.
5 17 9.7 1
8

pPO)I—‘\IOU'I

73. 1 .8 53.1 72.4 46.5 62 62.1
31 4.9 3.5 8.2 8.9 14.2 6.1

16.4 28. 4 27.7 30.2 20.4 22.3 25 20.1 29.3
11.9 27.4 29.2 33.7 38.1 40.1 43.2 37.5 39.4 35.4
40.6 34.4 20.4 21.9 19.3 30.7 16.7 25 18.3 25.3
31.6 17.5 7.9 7.3 5.4 4.6 6.5 2.1 5.5 3.9

6.7 1.2 2.7 4.2 2.1 0.8 3.1 1.4 2.5 0

81.2 66 45.1 45 43.6 51 32.2 28.3 31.7 35.1
18.8 34 54.9 55 56.4 49 67.8 71.7 68.3 64.9
156250 111667 66094 87306 62386 55658 40402
237805 195229 105877 106248 74604 73933

g WO NP DN

8
9
6
6

19/52

There are a few bad rows of data, but we can safely clean them out:

> badRows <- (apply(is.na(x),1,sum)

> table(badRows)
badRows

FALSE TRUE
10605 670

1= 0)

> tapply(x$median_household_income, badRows, median, na.rm=TRUE)

FALSE TRUE
55459 112813

> tapply(x$median_house_value, badRows, median, na.rm=TRUE)

FALSE TRUE
311100 516500

> tapply(x$vacant_units, badRows, median, na.rm=TRUE)

FALSE TRUE
107 70
> x <- na.omit(x)

20/52

As you may have guessed from the file name, the housing prices cover two distinet
regions:

> plot(x$longitude, x$latitude, pch=19, cex=0.5)

21/52

x$latitude

42

40

38

36

34

-110

T T T
-100 -90 -80

x$longitude

22/52

Let’s split these two states up into two separate datasets. I'll use the California set to
start, but hopefully we will have time to go back to the Pennsylvania set.

> ca <- x[x$statefp==6,]
> pa <- x[x$statefp==42,]

23/52

As a warm-up to additive models, leUs fit and tune simple knn model for whether the

majorily of residents in a census tract.

> testFlag <- (runif(nrow(ca)) > 0.8)
> trainFlag <- !testFlag
> ¢l <- as.numeric(ca$owners < 50)

For the training set, we will use cross-validation to select the optimal £:

> X <- cbind(ca$latitude,ca$longitude) [trainFlag,]
> y <- cll[trainFlag]
> foldId <- sample(1:5,nrow(X),replace=TRUE)

24/52

Here is the main validation code, using misclassification error:

> kvals <- 1:25
> res <- matrix(ncol=5, nrow=25)
> for (i in 1:5) {

+ trainSet <- which(foldId !'= i)

+ validSet <- which(foldId == i)

+ for (k in 1:25) {

+ pred <- knn(X[trainSet,],X[validSet,],y[trainSet],
+ k=kvals[k])

+ yhat <- (as.numeric(pred) - 1)

+ res[k,i] <- mean((y[validSet] != yhat))

+ print (k)

+ ¥

+ 3

25/52

Taking the results for each fold, I can calculate the cross validated mis-classification rate
as well as the standard errors of these rates:

> head(res)

[,11 [,2] [,31 [,4] [,5]
[1,] 0.27 0.27 0.26 0.27 0.28
[2,] 0.23 0.25 0.23 0.25 0.27
[3,] 0.24 0.25 0.26 0.25 0.27
[4,] 0.22 0.23 0.24 0.25 0.25
[5,] 0.23 0.24 0.26 0.25 0.26

[6,] 0.23 0.24 0.24 0.26 0.25
> cvError <- apply(res,1l,mean)
> cvSe <- apply(res,1,sd) / sqrt(5)

26,52

22222

[f we sel the tuning parameter to 4, we can then check how well this performs on the test
set.

> Xtest <- cbind(ca$latitude,ca$longitude) [testFlag,]
> ytest <- cl[testFlag]
> yhat <- (as.numeric(knn(X,Xtest,y,k=4)) - 1)
> mean ((yhat != ytest))
[1] 0.22
> round(table(yhat, ytest) / length(yhat) * 100)
ytest
yhat 0 1
0 56 16
1 6 22

The table at the bottom is called a confusion malrix, and gives more granularity than the
raw misclassification rate.

28/52

[f we sel the tuning parameter to 4, we can then check how well this performs on the test
set.

> Xtest <- cbind(ca$latitude,ca$longitude) [testFlag,]
> ytest <- cl[testFlag]
> yhat <- (as.numeric(knn(X,Xtest,y,k=4)) - 1)
> mean ((yhat != ytest))
[1] 0.22
> round(table(yhat, ytest) / length(yhat) * 100)
ytest
yhat 0 1
0 56 16
1 6 22

The table at the bottom is called a confusion malrix, and gives more granularity than the
raw misclassification rate.

29/52

Now, I want to understand the variables that effect the median house value in a census
tract. Here is a linear model that would be a good starting point (after some exploratory
plots, preferably):

> ca.
+ 4+
+ 4+
+ o+
+ 4+

Im <- 1lm(log(median_house_value) ~ median_household_income
mean_household_income + population + total_units +

vacant _units + owners + median_rooms +
mean_household_size_owners + mean_household_size_renters
latitude + longitude, data = ca, subset=trainFlag)

30/52

> summary (ca.lm)
Estimate Std. Error t value Pr(>|tl)

(Intercept) -5.78e+00 5.93e-01 -9.74 < 2e-16 **x
median_household_income 1.20e-06 5.19e-07 2.30 0.021 *
mean_household_income 1.08e-05 4.35e-07 24 .73 < 2e-16 x*xxx
population -4.15e-05 5.59e-06 -7.42 1.3e-13 **x
total_units 8.37e-05 1.73e-05 4.83 1.4e-06 **x
vacant_units -1.06e-06 2.64e-05 -0.04 0.968
owners -3.83e-03 3.57e-04 -10.72 < 2e-16 **x
median_rooms -1.49e-02 9.36e-03 -1.59 0.112
mean_household_size_owners 5.40e-02 7.99e-03 6.76 1.5e-11 *x%x*
mean_household_size_renters -7.46e-02 7.20e-03 -10.36 < 2e-16 *xx*x*
latitude -2.15e-01 6.36e-03 -33.81 < 2e-16 x*x*x*
longitude -2.15e-01 6.67e-03 -32.29 < 2e-16 *x*x*
Signif. codes: 0O ‘*x**’> 0.001 ‘xx*’ 0.01 ‘%’ 0.05 ‘. 0.1 > 1

Residual standard error: 0.32 on 5995 degrees of freedom
Multiple R-squared: 0.636, Adjusted R-squared: 0.635
F-statistic: 953 on 11 and 5995 DF, p-value: <2e-16

31/52

To fit an additive model in R, we can use the mgev package. It uses cross-validation by

default, making it very easy to use in place of linear regression.

> library (mgcv)
Loading required package: nlme

This is mgcv 1.8-7. For overview type 'help("mgcv-package")'.

> ca.gam <- gam(log(median_house_value)

+ ~ s(median_household_income) + s(mean_household_income)

+ + s(population) + s(total_units) + s(vacant_units)

+ + s(owners) + s(median_rooms) + s(mean_household_size_owners)
+ + s(mean_household_size_renters) + s(latitude)

+ + s(longitude), data=ca, subset=trainFlag)

32/52

To see the ‘coefficients’ in the additive model, we can plot the output object. These
options work well when working locally:

> plot(ca.gam2,scale=0,se=2,shade=TRUE,resid=FALSE, pages=1)

For class, I add the option select=i to only show the contribution of the 7'th variable.

33/52

s(median_household_income,4.9)

0.3

0.2

0.1

0.0

-0.2

_F-mmmmmmwumlmlw Horpmu |

50000 100000 150000

median_household_income

34/52

s(mean_household_income,6.16)

1.0

-0.5 0.0 0.5

-1.0

_uuwmlmwmwmumumwm \lHll\ T[T

50000 100000 150000 200000

mean_household_income

I
250000

35/52

s(population,1.88)

-04 -0.2 0.0 0.2

-0.6

_l_IIIL‘MLILlLLIUM_IM_UH\HH 1l | \I\ |

0 10000 20000

population

30000

36,52

s(total_units,4.21)

-04 -0.2 0.0 0.2

-0.6

w_mmmunwummu [
0 2000 4000
total_units

6000

s(vacant_units,5.95)

0.5 1.0 15 2.0

0.0

_—MHMMMMUHM\I\\\\\II\\\\\\\\\\\ Il \HIH [

0 1000 2000

1
I
3000

vacant_units

I
4000

I
5000

I
6000

38/52

90

¥'0

I I
¢0 00

(28°€'s18umo)s

I
¢0-

100

80

60

40

20

39/52

owners

s(median_rooms,7.73)

01 02 03 04

-0.1 0.0

-0.2

N NN NN NN NN NN
I I I I I I I
2 3 4 5 6 7 8

median_rooms

40/52

s(mean_household_size _owners,7.66)

00 02 04 06 038

-0.4

_MMM_IIWIIIWWMWMMWMWIH LU || I I

2 4 6 8 10

mean_household_size_owners

41/52

s(mean_household_size renters,2.03)

-0.4 -0.2 0.0 0.2

-0.6

_LMMMWW_HIWIMWMWMMMHHI\ 1| - |

2 4 6

mean_household_size_renters

10

42/52

s(latitude,8.86)

-0.5 0.0 0.5

-1.0

wwwm—ll__wnwmwmm_uw‘_

34 36 38 40 42

latitude 43/52

I I I I I I
0T &0 00 S0- O0T- ST-

(88'8‘apnubuol)s

-114

-116

-118

-120

=122

-124

4452

longitude

It actually makes more sense to allow and interaction between latitude and longitude.

This is also easy to include in mgecv:

ca.gam2 <- gam(log(median_house_value)

~ s(median_household_income) + s(mean_household_income)
s(population) + s(total_units) + s(vacant_units)
s(owners) + s(median_rooms) + s(mean_household_size_owners)
s(mean_household_size_renters)

>
+
+
+
+
+ s(longitude,latitude), data=ca, subset=trainFlag)

+ 4+ + +

45 /52

Nevada

4652

How well does these methods do in terms of prediction? We can predict using the
predict function just as with linear models:

> y <- log(ca$median_house_value)

> ca.lm.pred <- predict(ca.lm, ca)

> ca.gam.pred <- predict(ca.gam, ca)

> ca.gam2.pred <- predict(ca.gam2, ca)

And then check the mean squared error on both the training set and testing set:

> tapply((ca.lm.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.096 0.101

> tapply((ca.gam.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.064 0.072

> tapply((ca.gam2.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.059 0.065

47/52

In machine learning, you’ll often hear the caveat that everything depend on future values
following the same underlying model. I think we say that a lot, but forget to really think
about it. To illustrate, let’s re- ht the model on the California data without the latitude
and longitude components. We can then see how well the model trained on California
data generalizes to Pennsylvania data.

48/52

Here are the two linear models fit on the two different datasets.

+ mean_household_income + population + total_units +

+ vacant_units + owners + median_rooms +

+ mean_household_size_owners + mean_household_size_renters,
data = pa, subset=trainFlag)

> ca.lm2 <- 1m(log(median_house_value) ~ median_household_income
+ + mean_household_income + population + total_units +

it + vacant_units + owners + median_rooms +

+ + mean_household_size_owners + mean_household_size_renters,
+ data = ca, subset=trainFlag)

>

> pa.lm3 <- 1lm(log(median_house_value) ~ median_household_income
+

+

+

+

49/52

And here are the two additive models fit on the data:

ca.gam3 <- gam(log(median_house_value)
~ s(median_household_income) + s(mean_household_income)
+ s(population) + s(total_units) + s(vacant_units)
+ s(owners) + s(median_rooms) + s(mean_household_size_owners)
+ s(mean_household_size_renters), data=ca, subset=trainFlagPa)

pa.gam4 <- gam(log(median_house_value)
~ s(median_household_income) + s(mean_household_income)
+ s(population) + s(total_units) + s(vacant_units)
+ s(owners) + s(median_rooms) + s(mean_household_size_owners)

+ 4+ + +VV A+ +++V

+ s(mean_household_size_renters), data=pa, subset=trainFlagPa)

50/52

Fitting these models all on the PA data:

> y.pa <- log(pa$median_house_value)
> pa.lm2.pred <- predict(ca.lm2, pa)
> pa.gam3.pred <- predict(ca.gam3, pa)
> pa.lm3.pred <- predict(pa.lm3, pa)
> pa.gamé.pred <- predict(pa.gam4, pa)

We see that the California ones yield very poor MSE scores for PA:

> tapply((pa.lm2.pred - y.pa)~2,trainFlagPa,mean)
FALSE TRUE
0.58 0.55
> tapply ((pa.gam3.pred - y.pa)” 2,trainFlagPa,mean)
FALSE TRUE

0.47 0.44
> tapply((pa.lm3.pred - y.pa)~2,trainFlagPa,mean)
FALSE TRUE

0.095 0.093
> tapply ((pa.gamé4.pred - y.pa) 2,trainFlagPa,mean)
FALSE TRUE
0.070 0.063

51/52

If we account for the overall means being different, we see that the California models

perform reasonably well on the Pennsylvania data:

> tapply((pa.lm2.pred - y.pa),trainFlagPa,var)
FALSE TRUE

0.14 0.13

> tapply((pa.gam3.pred - y.pa),trainFlagPa,var)
FALSE TRUE

0.094 0.084

> tapply((pa.lm3.pred - y.pa),trainFlagPa,var)
FALSE TRUE

0.095 0.093
> tapply((pa.gamé4.pred - y.pa),trainFlagPa,var)
FALSE TRUE
0.070 0.063

52/52

