L.ecture 06
Decision Trees |

08 February 2016

Taylor B. Arnold

Yale Statistics Yale
STAT 365/665

1/33

» Problem Set #2 Posted — Due February 19th

» Piazza site https://piazza.com/

2/33

https://piazza.com/

Last time we starting fitting additive models to the variables in the California pricing
data.

As I alluded to, it actually makes more sense to allow an interaction between latitude and
longitude. This is easy Lo include in mgcv:

ca <- read.csv("ca.csv", as.is=TRUE)
library (mgcv)
ca.gam2 <- gam(log(median_house_value)
~ s(median_household_income) + s(mean_household_income)
s (population) + s(total_units) + s(vacant_units)
s(owners) + s(median_rooms) + s(mean_household_size_owners)
s(mean_household_size_renters)
s(longitude,latitude), data=ca, subset=trainFlag)

+ 4+ 4+ 4+ + VvV VoV

+ + + +

3/33

Nevada

4/33

How well does these methods do in terms of prediction? We can predict using the
predict function just as with linear models:

> y <- log(ca$median_house_value)

> ca.lm.pred <- predict(ca.lm, ca)

> ca.gam.pred <- predict(ca.gam, ca)

> ca.gam2.pred <- predict(ca.gam2, ca)

And then check the mean squared error on both the training set and testling set:

> tapply((ca.lm.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.096 0.101

> tapply((ca.gam.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.064 0.072

> tapply((ca.gam2.pred - y)~2, trainFlag, mean)
FALSE TRUE

0.059 0.065

5/33

In machine learning, you’ll often hear the caveat that our conclusions always depends on
future values following the same underlying model. I think we say that a lot, but forget
to really think about it. To illustrate, let’s re-fit the model on the California data without
the latitude and longitude components. We can then see how well the model trained on
California data generalizes to Pennsylvania data.

6/33

Here are the two linear models fit on the two different datasets.

+ mean_household_income + population + total_units +

+ vacant_units + owners + median_rooms +

+ mean_household_size_owners + mean_household_size_renters,
data = pa, subset=trainFlagPa)

> ca.lm2 <- Im(log(median_house_value) ~ median_household_income
+ + mean_household_income + population + total_units +

+ + vacant_units + owners + median_rooms +

+ + mean_household_size_owners + mean_household_size_renters,
+ data = ca, subset=trainFlag)

>

> pa.lm3 <- Im(log(median_house_value) ~ median_household_income
+

+

+

+

7/33

And here are the two additive models fit on the two datasets:

ca.gam3 <- gam(log(median_house_value)
~ s(median_household_income) + s(mean_household_income)
s (population) + s(total_units) + s(vacant_units)
s(owners) + s(median_rooms) + s(mean_household_size_owners)
s(mean_household_size_renters), data=ca, subset=trainFlag)

+ 4+ +

pa.gam4 <- gam(log(median_house_value)
~ s(median_household_income) + s(mean_household_income)
+ s(population) + s(total_units) + s(vacant_units)
+ s(owners) + s(median_rooms) + s(mean_household_size_owners)

>
+
+
+
+
>
>
+
+
+
+ + s(mean_household_size_renters), data=pa, subset=trainFlagPa)

8/33

Finding the predicted values from these models all on the PA data:

> y.pa <- log(pa$median_house_value)
> pa.lm2.pred <- predict(ca.lm2, pa)
> pa.gam3.pred <- predict(ca.gam3, pa)
> pa.lm3.pred <- predict(pa.lm3, pa)
> pa.gamé4.pred <- predict(pa.gamé4, pa)

9/33

We see that the California ones yield very poor MSE scores for PA:

> tapply((pa.lm2.pred - y.pa)~2,trainFlagPa,mean)
FALSE TRUE

0.58 0.55

> tapply ((pa.gam3.pred - y.pa)~2,trainFlagPa,mean)
FALSE TRUE

0.47 0.44

Compared to those models trained on the PA data:

> tapply((pa.lm3.pred - y.pa) 2,trainFlagPa,mean)
FALSE TRUE
0.095 0.093
> tapply((pa.gam4.pred - y.pa)~2,trainFlagPa,mean)
FALSE TRUE
0.070 0.063

10/33

However, if we account for the overall means being different, we see that the California

models perform

> tapply ((pa
FALSE TRUE
0.14 0.13
> tapply ((pa
FALSE TRUE
0.094 0.084
> tapply ((pa
FALSE TRUE
0.095 0.093
> tapply ((pa
FALSE TRUE
0.070 0.063

reasonably well on the Pennsylvania data:

.1m2.pred - y.pa),trainFlagPa,var)

.gam3.pred - y.pa),trainFlagPa,var)

.1lm3.pred - y.pa),trainFlagPa,var)

.gam4.pred - y.pa),trainFlagPa,var)

11/33

I'REE-BASED MODELS

12/33

[n order to deal with the combinatorial explosion of modeling every interaction in
higher-dimensional non-parametric regression and classification models, we have seen
that additive models assume that there are no interactions between the input variables.

13/33

[n order to deal with the combinatorial explosion of modeling every interaction in
higher-dimensional non-parametric regression and classification models, we have seen
that additive models assume that there are no interactions between the input variables.

Tree-based models instead allow interactions, but use the data to greedily determine
which interactions to include.

13/33

I think it is easiest to understand tree models by first seeing an example before backing
into the formal definition of how these models are fit.

> tf <- tree(log(median_house_value) ~ longitude + latitude, data = ca)
> plot (tf)
> text (tf, cex=0.75)

14/33

longitude 5 -121.707

latitude 4 37.9276

13.25 12.76

latitude < 34.4765

13.01

12.35

longitude § -117.547
latitude < 33.5548
longitude
12.88 11.86

longitude

12.52

-119.873

1217

15/33

Latitude

42

40

38

36

34

13.2

12.2

-124

122,

T
-120

Longitude

18 =l -114

16/33

Regression trees

The fitting algorithm for learning such a tree is as follows:

1. Consider splitting on every possible unique value of every single variable in the
data. Pick the ‘best” split from amongst all of these options.

17/33

Regression trees
The fitting algorithm for learning such a tree is as follows:
1. Consider splitting on every possible unique value of every single variable in the

data. Pick the ‘best” split from amongst all of these options.

2. Partition the training data into two classes based on step 1.

17/33

Regression trees

The fitting algorithm for learning such a tree is as follows:

1. Consider splitting on every possible unique value of every single variable in the
data. Pick the ‘best” split from amongst all of these options.

2. Partition the training data into two classes based on step 1.

3. Now, iteratively apply step 1 separately to each partition of the data.

17/33

Regression trees

The fitting algorithm for learning such a tree is as follows:

1. Consider splitting on every possible unique value of every single variable in the
data. Pick the ‘best” split from amongst all of these options.

2. Partition the training data into two classes based on step 1.
3. Now, iteratively apply step 1 separately to each partition of the data.

4. Continue splitting each subset until an appropriate stopping criteria has been
reached.

17/33

Regression trees

The fitting algorithm for learning such a tree is as follows:

1. Consider splitting on every possible unique value of every single variable in the
data. Pick the ‘best” split from amongst all of these options.

2. Partition the training data into two classes based on step 1.
3. Now, iteratively apply step 1 separately to each partition of the data.

4. Continue splitting each subset until an appropriate stopping criteria has been
reached.

5. Calculate the mean of all the training data in a terminal node (i.e., ‘leaf’) of the
learned tree structure. Use this as the predicted value for future inputs that fall
within the same bucket.

17/33

Stopping crilerion
There are many commonly used stopping criterion, often used simultaneously (if any is

satisfied stop splitting the partition):

minimum number of training samples in a node
maximum number of splits

minimum improvement in the best split

2w o=

maximum depth of the tree

In practice, particularly for larger datasets, the maximum number of splits is the mostly
commonly used.

18/33

Measuring ‘best’ splits

A simple way of measuring how good a partition of the dataset is is to use the residual
sum of squares from the predicted values that would be implied by the partition. So for
the partition 1, we have:

Z(yl_ icl yz +Z - zé] yl))

il ig T

19/33

Measuring ‘besU splits, conl.

Notice that using the standard trick with variance calculations we can simplify this.
Setting Xie1(ys) = Y. Yig1(y:) = yr- and ny and np as the sample sizes of the partitions,
we have:

Z Yi — Y1) +Z Yi — Yre) :Z(y?"’_?_ﬁ_Qyi?_ﬁ)+Z(y%+?/%c_2yi?_ﬁﬂ)

iel i1 iel i I
2 = 2 _
=> W) =+ () — e Vi
i€l igl

2 _ _
:Z(yi) —nr- Y — e Y

20/33

Measuring ‘besU splits, conl.

Notice that using the standard trick with variance calculations we can simplify this.
Setting Xie1(ys) = Y. Yig1(y:) = yr- and ny and np as the sample sizes of the partitions,
we have:

Z Yi — Y1) +Z Yi — Yre) :Z(y?"’_?_ﬁ_Qyi?_ﬁ)+Z(y?+?_/%c_2yi3_ﬁﬂ)

iel i1 iel i I
2 = 2 _
=> W) =+ () — e Vi
i€l igl

2 _ _
:Z(yi) —nr- Y — e Y

The first term does not change, so the goal is to actually minimize the following:

gt (55 3 59)

el

20/33

Computational details

If we sort the responses y; such that their corresponding z values are increasing for a
particular variable, we can write this even more compactly as:

2

2
argmax 1 Zyz +n17j. Zyz

j=1,2,..n—1 | J i<y i>j

If we are clever, these can be calculated in only O(n) operations.

21/33

Computational details

If we sort the responses y; such that their corresponding z values are increasing for a
particular variable, we can write this even more compactly as:

2

2
argmax 1 Zyz +n17j. Zyz

j=1,2,..n—1 | J i<y i>j

If we are clever, these can be calculated in only O(n) operations.
If we have a maximum of K splits, the total computational cost of fitting a regression tree

can be bounded by O(np - (log(n) + K)), but requires us to store p copies of the n
response variables.

21/33

Trees as Adaptive knn

Notice that the final predi(’ti()ns of a decision tree amount to simply averaging all of
responses for samples that are in a given l)u(ket. In this way, trees are like k-nearest
nel{?hbms except that what defines ‘near’ is learned from the data rather than blindly
using distances in the x-space... This helps to combat the curse of dimensionality but
may over-fit the training data.

Note that decision rees are not linear smoothers because the weights are not
independent functions of the x values.

22/33

Classification trees

By coding a class label as £1, and using the one-vs-many trick, we can directly apply the
regression tree algorithm to classification problems. This actually works fine for two
class problems, but is inefficient for multi-class ones. It is better to instead use a
measurement of the goodness ol a partition that directly includes all of the class labels.
Choices include mutual entropy and multinomial deviance.

23/33

Categorical and ordinal prediction variables

If a predictor variable is an ordinal variable, such as letter grades or terms such as ‘low’,
‘medium’ and ‘high’, these can be mapped to numerical values in a natural way in tree
based models.

Unordered categorical variables can be converted to factor levels as in a linear
regression, however there is another option: when considering the split points of the
calegorical variable simply choose between all possible permutations of the categories.
This is feasible for up to several dozen variables, depending on the amount of data and
how long you are willing to wait on the results.

24/33

Why trees?

> able to interpret the important variables in a model

> handles missing values well in both training and testing data
> reasonably fast to train

> does not depend on the scale of the predictor variables

» can handle multiclass problems directly

> works natively with categorical variables

> casily modified to be robust to outliers (just replace MSE with MAD for evaluating
splits; means with medians for predictions in terminal nodes)

> very fast to classify new points

> robust to tuning parameters (the stopping criteria), for a given set of data

25/33

Stability
Regression and classification trees are robust to the stopping criterion, but very sensitive
to the input data used from training. Removing some small fraction, say 10%, of the

training data can often lead to an extremely different set of predictions.

Fortunately, we can use this instability to our advantage!

26/33

Random forests

Random forests fit many decision trees to the same training data. Each decision tree is
fit using the aforementioned procedure except that:

> the training set for a given tree is sampled from the original data, with or without
replacement
> al each training split, only a randomly chosen subsel (of size m) of the variable are

considered for splitting the data

In order to predict new values from this ensemble of trees, we take the predictions from
each model and average them together (for classification, the class labels can also be
used as ‘votes’).

27/33

Random forest tuning parameters

The main tuning parameters for random forests are the total number of trees T, the
maximum depth of the trees K and the number of variables m randomly chosen to be
available at each split.

Conveniently, Tand K typically just need to be large enough and so are relatively easy to
set in practice. Values of m typically range from /m up to m/3. This parameter can have
a large effect on the model, but is also generally easy to find a reasonable value and not
extremely sensitive in mosl cases.

28/33

Random forest, computational details

Random forests have three very convenient computational benefits. First of all, each tree
is learned independently and so can be fit in parallel. Over a cluster this requires a local
copy of the data, but on a single machine the data can be shared across workers as the
raw data is never modified.

Secondly, the sorting scheme we described earlier, where the sample responses are
sorted based on each variable, can be (carefully) used as-is for each tree. That is, we only
need to sort the data once and can use this sorted set for each tree. We just simply apply
weights to this set according the sampling scheme used on each tree.

Finally, the fact that we only need to consider m variables at each split reduces the cost
of fitting a given tree.

29/33

Random forest, computational details, cont.

In total, a random forest can be fit in

O(nplog(p) + (KT) - (mn))

operations when running serially. Using C parallel cores, this can reduced to only:

O(nplog(p) + (KT/C) - (mn))

30/33

Random forest, computational details, cont.

If the data is too large to fit into memory, one can set the sub-sampling rate small
enough to allow each tree to load its data into memory (though this requires re-sorting
each time). Alternatively, each node in a cluster can locally run a random forest only on
its individual chunk of data; this often produces reasonable results.

There are also some Completelv different approaches which either involve very low
lalency message passing at each node, or discretizing the input variables and
representing the problem at each node as a two-way tal)le (see MLLib for an example of
the latter).

31/33

Out-of-bag error

Notice that for any given observation ¢, there should be a set of the trees in a random
forest such that 7 was not randomly chosen to train them. Because 4 was not used to train
these trees, if we look at only the [)ICdlCllOl’lS from this set and compare it to y;, this is an
unbiased view of how good the tree is fitting the data.

Using these predicted values for each 4, we can efficiently calculate a variant of
cross-validation. This 1s called the out-of-bag error.

32/33

Variable importance

We can associated each node with a score indicating how much that node decreased the
overall mean squared error of the training data for that tree. Taking the sum of these
scores for a given variable across all of the trees is a reasonable proxy for how important
a variable is in the prediction algorithm.

33/33

