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As we have started to see, the curse of dimensionality stops us from being able to fit
arbitrarily complex models in high dimensional spaces.

Additive models try to avoid this by fixing the structure of the learned models to limit
interactions between the input variables.

Tree-based models attempt to use the data itself to greedily learn which interactions are
actually important.
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Today we are going to look at another technique called principal components (PCs), or
principal component analysis (PCA), a specific example of dimensionality reduction.

Like trees, these use the data to find lower dimensional structures hidden in higher
dimensional space. They differ from trees, however, because principal components use
only the predictor variables (not the responses) and attempt to capture global and linear
structure, rather than local ones.
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Motivating�example

Say that we have a dataset of the following measurements from a large set of human volunteers
with the following variables:

▶ height
▶ weight
▶ waist size
▶ shoe size
▶ length of right arm
▶ length of left arm
▶ length of torso
▶ pant inseam length
▶ hat size
▶ left hand ring size
▶ right hand ring size

Technically we have 10 variables, though most of the variation in the dataset can probably be
summarized by at most 2-3 summary variables. 4/9



Motivating�example, cont.

In decreasing order of variation, consider the following measurements that can be
derived from these 10 variables

1. height

2. body mass index

3. ratio of torso length to total height

Overall height captures a large amount of the variation in the total dataset. Accounting
separately for BMI, which in theory should be relatively uncorrelated with overall height,
captures much of the next largest variation in the data. The final measurement attempts
to capture the remaining variation based on how height is distributed over a given
individuals frame.
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Motivating�example, cont.

Conceptually, these values mimic what principal components attempt to do: describe the
maximum amount of variation in the data with a smaller number of variables.

Each principal component, however, must be a linear function of the input variables (so
BMI would not be allowed). We also want them to be defined mathematically rather than
requiring us to hand construct them for each dataset.
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Principal�components

Formally, the principal components of the matrix X are a linear reparameterization
T = XW of the matrix X. The first column of T is the first principal component, the
second column is the second principal component, and so on.

Specifically, the matrix W is defined uniquely by the following conditions:

1. Each column of T must be uncorrelated with the others; specifically, W is an
orthogonal matrix called the loadings

2. The first column of T has the largest variance of all linear combinations of the
columns of X, the second column has the highest variance conditioned on being
uncorrelated with the first, and so forth.
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Principal�components, cont.

It can be shown that the matrix W is equal to the eigenvectors of the Gram matrix XtX.
From this relationship, there are many results from numerical linear algebra that can be
used to develop theoretical results about principal components.

For the purposes of this course, however, we will be more concerned with how they can
actually be of use in data analysis, visualizations, and predictive modeling. We will do
that for the remainder of today’s class by applying them to several example datasets.
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A look�ahead

The main shortcoming of principal components are that they only capture global linear
structures in the data. This tends to be a larger problem for prediction than it is for
visualization.

Figuring out how to get non-linear extensions of principal components is a wide open
problem in statistic and machine learning. Some avenues of research include:

▶ locally linear embedding

▶ factor models

▶ diffusion maps

▶ mixture models

We will touch on some, though certainly not all, of these in the upcoming weeks.
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