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Updated office hours:

▶ Taylor Arnold – Wednesdays, 16:00 - 17:00, HH 24

▶ Elena Khusainova – Tuesdays, 13:00-15:00, HH 24, Basement

▶ Yu Lu – Wednesdays, 19:00-20:30, HH 24, Basement

▶ Jason Klusowski – Thursdays, 19:00-20:30, HH 24
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Problem Set 2:

▶ We will give you full credit either way you approach this, but your solution for
Question #4 will be much more interesting if you weight the MSE of the census
tracts by their population
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Problem Set 1:

▶ Finished grading them; will likely post grades to ClassesV2 by tomorrow morning

▶ Actual grades were okay; median of 9/10, mean of 8.5/10

▶ However, many people not following directions:
▶ not putting files in a ‘.zip’ directory
▶ using a different zip format (.rar, .7z, .tar.gz)
▶ naming files incorrectly
▶ including column names, quotes, or both in the set of predicted values

▶ As well, many of the R and Python scripts did not actually run correctly; a common
problem being that they threw errors when they could not find global variables or
local files
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Problem Set 1, cont.

▶ Paying attention to these details is very important!

▶ In almost all cases, you got full credit for the implementation and data analysis
questions as long as you wrote something and your code ran without any errors

▶ Future problem sets will likely have fewer ‘parts’ to them, but the actually content
will be graded more strictly, so you do not want to lose points on silly things

▶ Test your code!

▶ Remember:
▶ No late submissions (unless you have a true emergency, and for

undergraduates a Deans excuse)
▶ We do drop the lowest grade from the final assignment
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▶ Today:

▶ Finish decision trees
▶ Walk through an analysis of trees for classification and regression
▶ Introduction to SVMs (time permitting)

6/9



Gradient�boosted�trees

Last time, we looked at decision trees and random forests. There is one additional
variant on these ideas which has been shown to produce extremely powerful predictions.
Called gradient boosted trees.
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Gradient�boosted�trees, cont.

The algorithm for this can conceptually be described as follows:

1. Fit a decision tree T(1) on a randomly sampled subset of the data (but using all of
the variables at each node, unlike RF) and call the predicted values from this tree
on the entire dataset ŷ(1).

2. Calculate the residuals r(1) = y − ŷ(1).

3. Fit a new decision tree T(2) on a random resampling of the residuals r(1), and
calculate the predicted values r̂(1) for the entire dataset.

4. Now, set ŷ(2) to be ŷ(1) + r̂(1) and set the new residuals to be r(2) = y − ŷ(2).

5. Calculate decision tree T(3) on a randomly sampled set of the residuals r(2), and
calculate the predicted values r̂(2) for the entire dataset.

6. Repeat as needed until you have predictions ŷ(K).
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2. Calculate the residuals r(1) = y − ŷ(1).
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Gradient�boosted�trees, cont.

The actual algorithm is modified it two ways:

1. The predicted values in the terminal nodes of the decision tree T(j) for any j are not
determined just by the sampled set of data, but rather chosen to minimize the
actual loss of using the ŷ(j).

2. The values for the predicted residuals r̂(j) is ‘shrunk’ towards zero by a factor of
0 < ρ ≤ 1. This value is called the learning rate.

Due to the learning rate factor, it makes sense to center the input variables before
applying this algorithm (this is usually done by the software).
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