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Notes:

▶ Problem 3 is due this Friday

▶ Problem 4 will be available on the course website later today, due next Friday
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Today

▶ Further exploration of the SVM optimization problem

▶ Visualizing the effect of kernels and costs

▶ A more complex example
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Review

We have the following specification of a support vector machine:

min 1

2
||β||22

s.t. yi(xt
iβ + β0) > 1− ξi, i = 1, . . . ,n

ξi > 0,
∑

i
ξi ≤ Constant.

This defines a margin around the linear decision plane of width 1
||β|| , and tries to

minimize the number of errors ξ of points that are on the wrong side of the margin.
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Review, Dual

Computing the Lagrangian and calculating the dual function, we were able to re-write
this as:

max
α

∑
i

αi −
1

2
·
∑

i′

∑
i

αiαi′yiyi′xt
ixi′

s.t. 0 ≤ αi ≤ C,
∑

i
αiyi = 0.

Which defines a quadratic program with box constraints that can be solved by general
purpose optimization engines.
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Review, Kernel�Trick

I also noted that the dual form of the problem only requires that we know the inner
product between pairs of samples of the predictor matrix. In this way, if we want to do
basis expansion, we only need to define the inner product rather than actually doing
projection into a higher space. This is called the kernel trick.
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The�Kernel�Trick, cont.

The projected inner product < h(xi), h(xi′) > is usually written directly as K(xi, xi′) for a
function K called the kernel. Popular choices include:

1. Linear: K(x, x′) =< x, x′ >

2. Polynomial: K(x, x′) = (1+ < x, x′ >)d

3. Radial: K(x, x′) = exp(−γ||x − x′||2)

4. Sigmoid: K(x, x′) = tanh(κ1 < x, x′ > +κ2)

Notice that these all require approximately the same effort to calculate as the linear
kernel.
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Review, Representation

One side result of the dual calculation also showed us that the vector β can be written as
a weighted sum of the inputs xi:

β =
∑

i
αiyixi

This is particularly useful when used in conjunction with the kernel trick, where we
instead have that:

β =
∑

i
αiyih(xi)
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Review, Representation

Now if we want to estimate h(xk)
tβ in order to do prediction, we again do not need to

project into a higher dimensional space by can just use:

h(xk)
tβ =

∑
i

αiyih(xk)
th(xi)

=
∑

i
αiyiK(xk, xi)

For this reason most support vector machine implementation usual store α or α · y rather
than β itself as this generalizes better to the kernel case.
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Rethinking�the�primal�problem

Let’s return for a moment to the original primal problem we constructed:

min 1

2
||β||22 + C ·

∑
i

ξi

s.t. yi(xt
iβ + β0) > 1− ξi, ξi > 0, i = 1, . . . ,n.

Notice that we will have either

ξi = 1− yi(xt
iβ + β0) or ξi = 0

As otherwise, we could decrease ξi further and improve the objective function without
breaking the constraints. A commonly used notation to specify this is called the positive
part, denoted by a plus sign (+) as a subscript:

ξi =
[
1− yi(xt

iβ + β0)
]
+
.
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Rethinking�the�primal�problem, cont.

We can actually substitute this directly into the primal problem to obtain an
unconstrained form of the primal problem:

min
β

1

2
||β||22 + C ·

∑
i

[
1− yi(xt

iβ + β0)
]
+

Making the substitution λ = 1
2C , this becomes:

min
β

∑
i

[
1− yi(xt

iβ + β0)
]
+
+ λ||β||22

Which looks strikingly similar to ridge regression, but with the sum of squares replaced
with a different measurement of goodness of fit.
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Rethinking�the�primal�problem

The value [1− yi(xt
iβ + β0)]+ is called the hinge loss. It behaves similarly in spirit to, still

importantly different from, squared error or binomial deviance.
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Penalized�estimators

Using f(x) to represent Xβ + β0, we can write linear regression as either:

[1− yf(x)]2 + λ · ||β||22
[f(x)− y]2 + λ · ||β||22

Logistic regression as:

log[1 + e−yf(x)] + λ · ||β||22

And support vector machines as:

[1− yf(x)]+ + λ · ||β||22
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Kernels�and�the�primal�problem

The details go beyond the technical background I have assumed for this course, but it is
possible to rewrite this unconstrained primal problem using the kernel trick as well:

min
f

∑
i

[1− yif(xi)]+ + λ||f||2H

For a suitably chosen norm || · ||H.
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The�actual�optimization

We now have two formulations for solving support vector machines: the unconstrained
primal problem given as a penalized estimator or the box-constrained dual problem.
These can than be solved by applying a number of standard optimization techniques.

Historically, the dual formulation had been more popular because it was obvious how to
deal with kernels and the box-constraints were easier to deal with than the constraints in
the unmodified primal problem.

However, with the reformulation of the primal problem as a penalized unconstrained
optimization objective, most new work is done on solving the primal problem directly.
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The�actual�optimization, cont.

A well-written summary of recent advances that does not require extensive background
knowledge is the following unpublished manuscript:

A. K. Menon. Large-scale support vector machines: algorithms and theory. Research
Exam, University of California, San Diego, 2009.
https://cseweb.ucsd.edu/~akmenon/ResearchExam.pdf
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Primal�and�Dual: Final�Thoughts

In terms of the understanding support vector machines, both formulations of the
problem are quite important.

The dual brings to light the representation of the support vector machine as a weighted
combination of a set of support vectors. It illustrates exactly what properties make a
good support vector (dissimilar to other vectors with the same class; similar to those with
different classes). It also shows one way of comparing and contrasting it with logistic
regression.

The primal problem shows an entirely different way of comparing logistic regression
with support vector machines. It also more clearly illustrates the role of the constant C
in tuning the final model. The primal also serves as the motivation for important
modifications such as replacing the hinge loss with a huberized variant.
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