
Lecture 12
Introduction to Neural Networks
29 February 2016

Taylor B. Arnold
Yale Statistics
STAT 365/665

1/37



Notes:

▶ Problem set 4 is due this Friday (SVM implementation)

▶ Problem set 5 will be posted prior to class tomorrow (neural net ‘implementation’)

2/37



mis−classification rate

co
un

t

0
2

4
6

8

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35

3/37



Today

▶ Introducing neural network architecture

▶ high level description of how to learn neural networks and specific challenges in
doing so

▶ simulation example of SGD

4/37



There are a large set of introductions to neural networks online. Popular ones that I like
are:

▶ Andrej Karpathy’s Hacker’s guide to Neural Networks:
http://karpathy.github.io/neuralnets/

▶ Andrej Karpathy’s lecture notes: http://cs231n.github.io/

▶ Geoffrey E. Hinton, Yann LeCun, and Yoshua Bengio (video; NIPS 2015):
http://research.microsoft.com/apps/video/default.aspx?id=259574

▶ Michael Nielsen’s Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com/

I think these are all worthwhile, and approach the subject from slightly different angles
and with different learning outcomes. I am going to (very) closely follow Michael
Nielsen’s notes for the next two lectures, as I think they work the best in lecture format
and for the purposes of this course. We will then switch gears and start following
Karpathy’s lecture notes in the following week.

5/37

http://karpathy.github.io/neuralnets/
http://cs231n.github.io/
http://research.microsoft.com/apps/video/default.aspx?id=259574
http://neuralnetworksanddeeplearning.com/


A simple�decision

Say you want to decide whether you are going to attend a cheese festival this upcoming
weekend. There are three variables that go into your decision:

1. Is the weather good?

2. Does your friend want to go with you?

3. Is it near public transportation?

We’ll assume that answers to these questions are the only factors that go into your
decision.

6/37



A simple�decision, cont.

I will write the answers to these question as binary variables xi, with zero being the
answer ‘no’ and one being the answer ‘yes’:

1. Is the weather good? x1
2. Does your friend want to go with you? x2
3. Is it near public transportation? x3

Now, what is an easy way to describe the decision statement resulting from these inputs.

7/37



A simple�decision, cont.

We could determine weights wi indicating how important each feature is to whether you
would like to attend. We can then see if:

x1 · w1 + x2 · w2 + x3 · w3 ≥ threshold

For some pre-determined threshold. If this statement is true, we would attend the
festival, and otherwise we would not.

8/37



A simple�decision, cont.

For example, if we really hated bad weather but care less about going with our friend and
public transit, we could pick the weights 6, 2 and 2.

With a threshold of 5, this causes us to go if and only if the weather is good.

What happens if the threshold is decreased to 3? What about if it is decreased to 1?

9/37



A simple�decision, cont.

For example, if we really hated bad weather but care less about going with our friend and
public transit, we could pick the weights 6, 2 and 2.

With a threshold of 5, this causes us to go if and only if the weather is good.

What happens if the threshold is decreased to 3? What about if it is decreased to 1?

9/37



A simple�decision, cont.

For example, if we really hated bad weather but care less about going with our friend and
public transit, we could pick the weights 6, 2 and 2.

With a threshold of 5, this causes us to go if and only if the weather is good.

What happens if the threshold is decreased to 3? What about if it is decreased to 1?

9/37



A simple�decision, cont.

If we define a new binary variable y that represents whether we go to the festival, we can
write this variable as:

y =

{
0, x1 · w1 + x2 · w2 + x3 · w3 < threshold
1, x1 · w1 + x2 · w2 + x3 · w3 ≥ threshold

Is this starting to look familiar yet?

10/37



A simple�decision, cont.

Now, if I rewrite this in terms of a dot product between the vector of of all binary inputs
(x), a vector of weights (w), and change the threshold to the negative bias (b), we have:

y =

{
0, x · w + b < 0
1, x · w + b ≥ 0

So we are really just finding separating hyperplanes again, much as we did with logistic
regression and support vector machines!

11/37



A perceptron

We can graphically represent this decision algorithm as an object that takes 3 binary
inputs and produces a single binary output:

This object is called a perceptron when using the type of weighting scheme we just
developed.

12/37



A network�of�perceptrons

A perceptron takes a number of binary inputs and emits a binary output. Therefore it is
easy to build a network of such perceptrons, where the output from some perceptrons
are used in the inputs of other perceptrons:

Notice that some perceptrons seem to have multiple output arrows, even though we have
defined them as having only one output. This is only meant to indicate that a single
output is being sent to multiple new perceptrons.

13/37



A network�of�perceptrons, cont.

The input and outputs are typically represented as their own neurons, with the other
neurons named hidden layers

14/37



A network�of�perceptrons, cont.

The biological interpretation of a perceptron is this: when it emits a 1 this is equivalent
to ‘firing’ an electrical pulse, and when it is 0 this is when it is not firing. The bias
indicates how difficult it is for this particular node to send out a signal.

15/37



16/37



17/37



A network�of�perceptrons, cont.

Notice that the network of nodes I have shown only sends signals in one direction. This
is called a feed-forward network. These are by far the most well-studied types of
networks, though we will (hopefully) have a chance to talk about recurrent neural
networks (RNNs) that allow for loops in the network. The one-directional nature of
feed-forward networks is probably the biggest difference between artificial neural
networks and their biological equivalent.

18/37



Sigmoid�neuron

An important shortcoming of a perceptron is that a small change in the input values can
cause a large change the output because each node (or neuron) only has two possible
states: 0 or 1. A better solution would be to output a continuum of values, say any
number between 0 and 1.

Most tutorials spend a significant amount of time describing the conceptual leap from
binary outputs to a continuous output. For us, however this should be quite
straightforward.

19/37



Sigmoid�neuron, cont.

As one option, we could simply have the neuron emit the value:

σ(x · w + b) = 1

1 + e−(x·w+b)

For a particularly positive or negative value of x · w + b, the result will be nearly the same
as with the perceptron (i.e., near 0 or 1). For values close to the boundary of the
separating hyperplane, values near 0.5 will be emitted.

20/37



Sigmoid�neuron, cont.

This perfectly mimics logistic regression, and in fact uses the logit function to do so. In
the neural network literature, the logit function is called the sigmoid function, thus
leading to the name sigmoid neuron for a neuron that uses it’s logic.

Notice that the previous restriction to binary inputs was not at all needed, and can be
easily replaces with continuous input without an changes needed to the formulas.

21/37



Activation�functions

In the sigmoid neuron example, the choice of what function to use to go from x · w + b to
an output is called the activation function. Using a logistic, or sigmoid, activation
function has some benefits in being able to easily take derivatives and the interpret them
using logistic regression.

Other choices have certain benefits that have recently grown in popularity. Some of
these include:

1. hyperbolic tan: tanh(z) = 2σ(2x)− 1

2. rectified linear unit: ReLU(z) = max(0, z)

3. leaky rectified linear unit

4. maxout

We will explore the pros and cons of these in upcoming lectures.
22/37



MNIST example

23/37



MNIST example, classification

To determine which class to put a particular input into, we look at which of the output
neurons have the largest output.

24/37



Learning�neural�networks

We now have an architecture that describes a neural network, but how do we learn the
weights and bias terms in the model given a set of training data?

As an important side note, notice that with just one node, we could define a learning
algorithm which perfectly replicates a support vector machine or logistic regression.

25/37



Cost�function

The primary set-up for learning neural networks is to define a cost function (also known
as a loss function) that measures how well the network predicts outputs on the test set.
The goal is to then find a set of weights and biases that minimizes the cost.

26/37



Cost�function, cont.

One example of a cost function is just squared error loss:

C(w, b) = 1

2n
∑

i
(yi − ŷ(xi))

2

Or, for classification, the hinge loss:

C(w, b) =
∑

i
[1− yi · ŷ(xi)]+

As with the activation functions, we’ll explore the different cost functions over the the
next several weeks.

27/37



Optimization�problem

How does one actually do the optimization required in fitting neural networks? With
very few exceptions, every technique is somehow related to gradient descent. That is, we
calculate the gradient function, move a small amount in the opposite direction of the
gradient (because we are minimizing), and then recalculate the gradient on the new spot.

28/37



Gradient�descent

Mathematically, we can describe these updates as:

wk+1 = wk − η · ∇wC
bk+1 = bk − η · ∇bC

For some value η > 0. This tuning parameter, as in gradient boosted trees, is called the
learning rate. Too low, and learning takes a very long time. Too small, and it is likely to
have trouble finding the true minimum (as it will keep ‘overshooting’ it).

29/37



Decomposable�cost�function

One particularly important aspect of all of the cost functions used in neural networks is
that it the are able to be decomposed over the samples. That is:

C =
1

n
∑

i
Ci

For the individual costs Ci of the i’th sample.

30/37



Decomposable�cost�function, cont.

Consider now taking a subset M ⊆ {1, 2, . . .n} with size m of the training set. It would
seem that we can approximate the cost function using only this subsample of the data:∑

i∈M ∇Ci

m ≈
∑n

i=1 ∇Ci
n ≈ ∇C

So it seems that we can perhaps estimate the gradient using only a small subset of the
entire training set.

31/37



Stochastic�gradient�descent�(SGD)

Stochastic gradient descent uses this idea to speed up the process of doing gradient
descent. Specifically, the input data are randomly partitioned into disjoint groups
M1,M2, . . . ,Mn/m. We then do the following updates to the weights (biases are done at
the same time, but omitted for sake of space):

wk+1 = wk −
η

m
∑

i∈M1

∇Ci

wk+2 = wk+1 −
η

m
∑

i∈M2

∇Ci

...

wk+n/m+1 = wk+n/m − η

m
∑

i∈Mn/m

∇Ci

Each set Mj is called a mini-batch and going through the entire dataset as above is called
an epoch.

32/37



Stochastic�gradient�descent�(SGD)

Stochastic gradient descent uses this idea to speed up the process of doing gradient
descent. Specifically, the input data are randomly partitioned into disjoint groups
M1,M2, . . . ,Mn/m. We then do the following updates to the weights (biases are done at
the same time, but omitted for sake of space):

wk+1 = wk −
η

m
∑

i∈M1

∇Ci

wk+2 = wk+1 −
η

m
∑

i∈M2

∇Ci

...

wk+n/m+1 = wk+n/m − η

m
∑

i∈Mn/m

∇Ci

Each set Mj is called a mini-batch and going through the entire dataset as above is called
an epoch.

32/37



Stochastic�gradient�descent�(SGD),�cont.

You’ll notice that the algorithm you need to implement in problem set 4 uses stochastic
gradient descent to find a solution the support vector machine optimization problem.

33/37



Stochastic�gradient�descent�(SGD),�cont.

The main tuning parameters for this technique are the size of the mini-batch (m), the
learning rate (η) and the number of epochs (E) to use. Again, we will discuss these in the
upcoming weeks by way of many examples.

Note: Some texts refer to SGD as only describing the case with a mini-batch size of 1,
whereas others use SGD to refer to this more generic algorithm. I believe that the
technical term for the generic algorithm is mini-batch gradient descent (MGD), but you will
rarely hear the term.

34/37



Calculating�the�gradient�function

The last bit that we need in order to run SGD on a neural network is a way to actually
calculate the gradient for a given mini-batch. This will be the sole focus of Wednesday’s
lecture, when I derive the equations that allow us to calculate the gradient in a
particularly efficient way.

35/37



SGD Example: OLS

To simulate stochastic gradient descent, consider using it to find the ordinary least
squares estimator of a multivariate regression function:

f(β) = 1

n ·
∑

i
fi(β)

=
1

n ·
∑

i
(yi − xiβ)

2

=
1

n ·
∑

i
(y2i + βtxt

ixiβ − 2yixt
iβ)

36/37



SGD Example: OLS,�cont.

Now, the gradient of f is given by:

∇f = 1

n ·
∑

i
fi(β)

=
1

n ·
∑

i
∇fi(β)

=
2

n ·
∑

i
(xt

ixiβ − xt
iy)

And can be approximated by:

∇f ≈ 2

m ·
∑
i∈M

(xt
ixiβ − xt

iy)

For a mini-batch M of size m.

37/37


