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Notes:

▶ Problem set 4 is due this Friday

▶ Problem set 5 is due a week from Monday (for those of you with a midterm crunch
this week); I will post the questions by tomorrow morning
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Neural�network�review

Last time we established the idea of a sigmoid neuron, which takes a vector of numeric
variables x and emits a value as follows:

σ(x · w + b) = 1

1 + e−(x·w+b)

It is entirely defined by a vector of weights w and bias term b, and functions exactly like
logistic regression.
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Neural�network�review, cont.

These single neurons can be strung together to construct a neural network. The input
variables are written as special neurons on the left-hand side of the diagram:
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Stochastic�gradient�descent

We started talking about how to learn neural networks via a variant of gradient descent,
called stochastic gradient descent. The only detail left to figure out is exactly how
calculate the gradient of the cost function in an efficient way.
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Idea�behind�back-propagation

Before starting down the path of explaining the math behind back-propagation, I want to
explain what the big idea behind the method is and why it makes sense as a general
approach.
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Idea�behind�back-propagation, cont.
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Some�notation, cont.

We need a way of referring unambiguously to the weights and biases in a multi-layer
neural network. To start define

wl
j,k

As the weight of node k in layer l − 1 as applied by node j in layer l.
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Some�notation, cont.

Now let:

bl
j

Be the bias of node j of layer l.

9/21



Some�notation, cont.

We now define two additional quantities. The weighted input emitted from node j in
layer l:

zl
j

The term input refers to the fact that this in the input to the activation function.
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Some�notation, cont.

And the activation

al
j

Derived from applying the function σ (the sigmoid or logit function for us so far) to the
the weighted input zl

j.
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Some�notation, cont.

That’s a lot to take in all at once. Here is the cheat-sheet version that shows how all of
these quantities fit together:

al
j = σ(zl

j)

= σ(
∑

k
wl

jkal−1
k + bl

j)

It will, also, be beneficial to define one more quantity:

δl
j =

∂C
∂zl

j

Called the error functions. These error functions will help in keeping the number of
computations we need to make as small as possible.
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Cost�function�again

In what follows we assume that we are dealing with one individual data point. So the
cost is simply the cost of that one training point (which we called Ci in Monday’s notes).

If the neural network has L total layers, notice that in general we will have the cost being
a function only of the activations from layer L of the neural network:

C(w, b) = f(aL
1 , aL

2 , . . .)

In our case, this can be explicitly written as:

C(w, b) =
∑

k
(yk − aL

k )
2

Note: this sum is over the dimension of the output, not the number of samples! If we
only have a univariate output, this will just be a single value.
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Feed-forward�step

We want to calculate how much the cost changes with respect to the errors on the outer
layer. This ends up being a fairly straightforward application of the chain rule:

δL
j =

∂C
∂zL

j

=
∑

k

∂C
∂aL

k
· ∂aL

k
∂zL

j

=
∂C
∂aL

j
·
∂aL

j

∂zL
j

=
∂C
∂aL

j
· σ′(zL

j )
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Feed-forward�step, cont.

We can explicitly calculate the first partial derivative given the cost function. Here for
example it is given as:

∂C
∂aL

j
=

∂

∂aL
j

∑
k
(yk − aL

k )
2

= 2 · (aL
j − yj)

The function σ′ is also easily determined by differentiation of the sigmoid function:

σ′(z) = σ(z) · σ(1− z)
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Back-propagation�step

We now want to relate the errors δl
j to the errors in δl+1

j . This allows us to then work
backwards from the feed-forward step. Notice that:

δl
j =

∂C
∂zl

j

=
∑

k

∂C
∂zl+1

k
·
∂zl+1

k
∂zl

j

=
∑

k
δl+1

k ·
∂zl+1

k
∂zl

j

To calculate the remaining derivatives, notice that we have a formula relating one set of
weighted inputs to the next set:

zl+1
k =

∑
i

wl+1
ki al

i + bl+1
k

=
∑

i
wl+1

ki σ(zl
i) + bl+1

k
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Back-propagation�step, cont.

Using this relationship, we can now take partial derivatives

∂zl+1
k

∂zl
j

=
∂

∂zl
j

(∑
i

wl+1
ki σ(zl

j) + bl+1
k

)
= wl+1

kj · σ′(zl
j)

Which when plugged into our original equations yields:

δl
j =

∑
k

δl+1
k · wl+1

kj · σ′(zl
j)
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Relating�errors�to�weights�and�bias

We now just need to relate the errors δl
j to the gradient with respect to the weights and

biases directly. We have, from the linearity of the bias term, a very simple relationship
between δl

j with the gradient of the bias terms:

δl
j =

∂C
∂zl

j

=
∂C
∂bl

j
·
∂bl

j

∂zl
j

=
∂C
∂bl

j
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Relating�errors�to�weights�and�bias

For the weights, a very similar

δl
j =

∂C
∂zl

j

=
∂C
∂wl

jk
·
∂wl

jk

∂zl
j

=
∂C
∂wl

jk
· 1

al−1
k

Which can be re-written as:

∂C
∂wl

jk
= al−1

k δl
j
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Putting�these�all�together

We have now four equations that describe the mechanics of back-propagation. I will
write them here a bit more compactly for reference:

δL
j = ∇aLC ◦ σ′(zL)

δl
j = ((wl+1)Tδl+1) ◦ σ′(zl)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Where dropping an index indicates that I am doing math on the entire vector or matrix
of values. The symbol ◦ (Hadamard product) refers to element-wise multiplication; a
common operation in programming but less-so in abstract mathematics.
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The�back-propagation�algorithm

The back-propagation algorithm as a whole is then just:

1. Select an element i from the current minibatch and calculate the weighted inputs z
and activations a for every layer using a forward pass through the network

2. Now, use these values to calculate the errors δ for each layer, starting at the last
hidden layer and working backwards, using back-propagation

3. Calculate ∇wCi and ∇bCi using the last two equations

4. Repeat for all samples in the minibatch, to get:∑
i∈M ∇wCi

|M|
≈ ∇wC

∑
i∈M ∇bCi

|M|
≈ ∇bC

5. Update the weights and biases by (the estimates of) −η · ∇wC and −η · ∇bC,
respectively

6. Repeat over every mini-batch, and for the desired number of epochs 21/21


