Lecture 13
Back-propagation

02 March 2016

Taylor B. Arnold
Yale Statistics
STAT 365/665

Yale

1/21

Notes:
> Problem set 4 is due this Friday

> Problem set 5 is due a week from Monday (for those of you with a midterm crunch
this week); I will post the questions by tomorrow morning

2/21

Neural network review

Last time we established the idea of a sigmoid neuron, which takes a vector of numeric
variables z and emits a value as follows:

1

It is entirely defined by a vector of weights w and bias term b, and functions exactly like
logistic regression.

3/21

Neural network review, cont.

These single neurons can be strung together to construct a neural network. The input
variables are wrillen as special neurons on the left-hand side of the diagram:

hidden layers

input layer

4/21

Stochastic gradient descent
We started talking about how to learn neural networks via a variant of gradient descent,

called stochastic gradient descent. The only detail left to figure out is exactly how
calculate the gradient of the cost function in an efficient way.

5/21

Idea behind back-propagation
Before starting down the path of explaining the math behind back-propagation, I want to

explain what the big idea behind the method is and why it makes sense as a general
approach.

6/21

Idea behind back-propagation, cont.

hidden layer 1 hidden layer 2 hidden layer 3

Yy

input layer

output layer

7/21

Some nolation, conl.

We need a way of referring unambiguously to the weights and biases in a multi-layer
neural network. To start define

[
Wik

As the weight of node k in layer [— 1 as applied by node j in layer [.

8/21

Some notation, cont.

Now let:

Be the bias of node j of layer L.

9/21

Some notation, cont.

We now define two additional quantities. The weighted input emitted from node jin
layer I:

The term input refers to the fact that this in the input to the activation function.

10/21

Some notation, cont.

And the activation

Derived from applying the function o (the sigmoid or logit function for us so far) to the

the weighted input zi

11/21

Some notation, cont.

That’s a lot to take in all at once. Here is the cheat-sheet version that shows how all of
these quantities fit together:

12/21

Some notation, cont.

That’s a lot to take in all at once. Here is the cheat-sheet version that shows how all of
these quantities fit together:

= U(Z wka, L4l)

k

[t will, also, be beneficial to define one more quantity:

Called the error functions. These error functions will help in keeping the number of
compulations we need Lo make as small as possible.

12/21

Cost function again

[n what follows we assume that we are dealing with one individual data point. So the
cosl is simply the cost of that one training point (which we called C; in Monday’s notes).

If the neural network has L total layers, notice that in general we will have the cost being
a function only of the activations from layer L of the neural network:

C(w’ b) = f(alLa aé/a 00)

In our case, this can be explicitly writlen as:

Clw, b) = (yk— af)”

k

Note: this sum is over the dimension of the output, not the number of samples! If we
only have a univariate output, this will just be a single value.

13/21

Feed-forward step

We want to calculate how much the cost changes with respect to the errors on the outer

layer. This ends up being a fairly straightforward application of the chain rule:

oC
ok = ——
g asz
=3~ 2C Oa
B - 8a£ 8sz
_oC aajL
daj 0z
_9C L
N 3ajL 7 <zj>

14/21

Feed-forward step, cont.

We can explicitly calculate the first partial derivative given the cost function. Here for
example it is given as:

ocC 0
= — > (y—af)’

TajL dak

The function ¢’ is also easily determined by differentiation of the sigmoid function:

d'(2) =0(2) - o(l —2)

15/21

Back-propagation step

We now want to relate the errors 68 to the errors in 5]l.+1. This allows us to then work
backwards from the feed-forward step. Notice that:

ocC
b=~
J 3z§
72 oC 82““1
8z§€+1 ;
1 (’92?’1
N % ‘ 8z§

16,/21

Back-propagation step

We now want to relate the errors 68 to the errors in 5]l.+1. This allows us to then work
backwards from the feed-forward step. Notice that:

oC
sl—= 2=
J 3z§
oC 82“’1
- Z z+1 T4
J
l+1 azl+l
= k
; 3§

To calculate the remaining derivatives, notice that we have a formula relating one set of
weighted inputs to the next set:

A — Z wh gl 4 b+

— E ,wl+l bH—l

16,/21

Back-propagation step, cont.

Using this relationship, we can now take partial derivatives

I+1
Oz _ wz+1 bz+1
1 § :
8zj 82 i
+1 1l
=wy o (zj)

Which when plugged into our original equations yields

1 H1 L i)
6; = Zék ‘W o (%)
k

17/21

Relating errors Lo weights and bias

We now just need to relate the errors 6} to the gradient with respect to the weights and
biases directly. We have, from the linearity of the bias term, a very simple relationship
between 6l with the gradient of the bias terms:

oC
A
J 8zjl.
_9C o
abé- 825-
_oc
~ Obl

J

18/21

Relating errors to weights and bias

For the weights, a very similar

Which can be re-written as:

ocC
Hl= ==
J azj
_ 0C 0u
_6‘w§k 3z§
L ac 1
- Ou ap!
oc =14l
8wjl_k7 k 5j

19/21

Putting these all together

We have now four equations that describe the mechanics of back-propagation. I will
write them here a bit more compactly for reference:
5 =VauCod'(2")
U (o1 T sl 1
9j = ((w™7) 767" 0 0’(2)

e

= =&t

i
8bj J
oC _ 1 1g
awé.k U0

Where dropping an index indicates that I am doing math on the entire vector or matrix
of values. The symbol o (Hadamard product) refers to element-wise multiplication; a
common operation in programming but less-so in abstract mathematics.

20/21

The back-propagation algorithm

The back-propagation algorithm as a whole is then just:

1. Select an element ¢ from the current minibatch and calculate the weighted inputs 2
and activations « for every layer using a forward pass through the network

2. Now, use these values to calculate the errors ¢ for each layer, starting at the last
hidden layer and working backwards, using back-propagation

3. Calculate V,,C; and V;, C; using the last two equations
4. Repeal for all samples in the minibatch, to get:

ZiGMvﬂ)Ci ~V.C ZievaCi
|M] | M

5. Update the weights and biases by (the estimates of) —n - V,Cand —n - V;C,
respectively

szC

6. Repeat over every mini-batch, and for the desired number of epochs

21/21

