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Notes:

▶ Problem set 5 is due on Monday, March 14th
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▶ Today:
▶ modular neural networks
▶ a bit of review
▶ initializing weights
▶ quasi second order SGD
▶ learning rate schedule
▶ hyper-parameter selection heuristics
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Modular�view�of�neural�networks

We have so far thought of neural networks as being primarily defined by a network of
individual neurons. This is helpful both for its simplicity and the historical development
of the estimators. However, there is another way of thinking about neural networks that
more closely mimics popular implementations such as Caffe, Keras, and Torch.
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Modular�view�of�neural�networks, cont.

For an input vector x and a response y, we can view the network as simply being
something like:

z1 = W1a0 + b1 (1)
a1 = σ(z1) (2)
z2 = W2a1 + b2 (3)
a2 = σ(z2) (4)
z3 = W3a2 + b3 (5)
a3 = σ(z3) (6)

Cost = (y − a3)2 (7)

Each level can be described by a module. The z layers are called linear layers, the a’s as
sigmoid layers, and the last line is simply the cost function. Notice that the activation
functions are now their own layers, which actually simplifies things mathematically.
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Modular�view�of�neural�networks, cont.

Each type of module needs to be able to:

▶ take an input and return an output for the current tuning parameters

▶ calculate the matrix ∂outputi
∂inputj

▶ calculate the set ∂outputi
∂parametersj

▶ store the tuning parameters

▶ update parameters from a minibatch

If I have all of these implemented, I can simply chain together modules and have a
built-in algorithm for learning from input data.
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Modular�view�of�neural�networks, cont.

An example, using the keras library, describes this well:

model = Sequential()
model.add(Dense(64, input_dim=20, init='uniform'))
model.add(Activation('sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(64, init='uniform'))
model.add(Activation('sigmoid'))
model.add(Dropout(0.5))
model.add(Dense(10, init='uniform'))
model.add(Activation('softmax'))

Where dense refers to a linear connected layer.

7/22



BVLC GoogLeNet: Szegedy et al. (2014)
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Review: Cross-entropy�and�soft-max

Due to the shape of the sigmoid neuron, weights that are very far from their optimal
values learn slowly in a plain, vanilla network. One way to fix this is to use the
cross-entropy cost-function, defined as:

C = −
∑

j

[
yj log(aL

j ) + (1− yj) log(1− aL
j )
]

For a single sample, and similarly for an entire mini-batch.

Another common approach is to define what is termed a softmax layer. The redefines the
activations of the output later, aL, as follows:

aL
j =

ezL
j∑

k ezL
k

This has the additional benefit that the last layer is easily interpreted as a sequence of
probabilities.
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Review: Regularization�in�Neural�Networks

As the size of neural networks grow, the number of weights and biases can quickly
become quite large. State of the art neural networks today often have billions of weight
values. In order to avoid over-fitting, one common approach is to add a penalty term to
the cost function. Common choices are the ℓ2-norm, given as:

C = C0 + λ
∑

i
w2

i

Where C0 is the unregularized cost, and theℓ1-norm:

C = C0 + λ
∑

i
|wi|.

The distinction between these is similar to the differences between lasso and ridge
regression.
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Review: Dropout

A very different approach to avoiding over-fitting is to use an approach called dropout.
Here, the output of a randomly chosen subset of the neurons are temporarily set to zero
during the training of a given mini-batch. This makes it so that the neurons cannot
overly adapt to the output from prior layers as these are not always present. It has
enjoyed wide-spread adoption and massive empirical evidence as to its usefulness.
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Initial�weights

Rather than initializing the weights in the neural network by a standard normal
Gaussian, it is better to initialize with Gaussian noise with zero mean but a standard
deviation of 1/

√
n where n is the number of nodes from the previous layer that are

incoming to this given node. This perhaps makes sense when we consider two layers of a
neural network:

z1 = W1a0 + b1 (8)
a1 = σ(z1) (9)

This has the effect of making the distribution of all of the weighted inputs, zl
j, equal to

standard Gaussian noise.
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Optimization�tricks

For the rest of today, I am going to talk about approaches for fitting neural networks that
can apply more generally to difficult optimization problems. I think it is easier to use a
simple example to illustrate this, rather than directly applying to neural networks. So
we’ll return to minimizing the sum of squared residuals in a linear models:

f(β) = 1

n
∑

i
(yi − xt

iβ)
2

=
1

n
(
yty + βtXtXβ − 2ytXβ

)
With the analytic gradient of:

∇f(β) = 2XtXβ − 2ytX
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Gradient�Descent

Gradient Descent uses the following set of updates for some learning rate η > 0:

βt+1 = βt − η · ∇f(βt)

Which can be re-written into two parts:

vt+1 = −η · ∇f(β)
βt+1 = βt + vt+1.

14/22



Newton’s�method

Newton’s method uses the Hessian matrix, the matrix of all second derivatives, to
generate a quadratic approximation of f near βt. Generally, the updates are of the form:

βt+1 = βt − γ · [H(f(βt))]
−1 · ∇f(β)

Where the learning rate γ function quite a bit differently, primarily because it can
reasonably be set to 1 and should never be greater than 1.
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Example�of�Newton’s�method�for�optimization
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Momentum

The problem with second order methods is that the require learning a p-by-p matrix of
values. This can be huge for modern neural networks. An alternative approach is to use
a concept similar to the physical idea of momentum. Specifically, we use updates of the
form

vt+1 = µ · vt − η · ∇f(βt)

βt+1 = βt + vt+1.

Where the value µ ∈ [0, 1] serves as proxy for friction.

This conveniently requires only a minimal increase in complexity but drastically
increases the performance of fitting neural networks.
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Nesterov’s�Method

A slight tweak of standard momentum, which is also important when optimizing
non-convex surfaces, is to use Nesterov’s Method. This calculates the gradient at the spot
that would be arrived at with the current momentum. Specifically:

vt+1 = µ · vt − η · ∇f(βt + µ · vt)

βt+1 = βt + vt+1.

A picture helps considerably in understanding this.
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Nesterov’s�Method
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Learning�Rate�Annealing

As we have already seen, it is necessary to decrease the learning rate η over time in
stochastic gradient descent. In the SVM case we have used a 1/t decay, where t is the
epoch number. Other popular suggestions are to use e−kt or to use (1− ts) for some step
size s.

Karpathy suggests that the fixed step size is the most popular at the moment, when only
using a single learning rate.
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Adaptive�learning�rates

Another approach is to adaptively decay the learning rate for each parameter by tracking
how fast the gradient is changing. A popular example is Adagrad, seen here:

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research, 12,
2121-2159. Chicago

Or Adam, given in this paper:

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Both are quite readable and I suggest taking a look if you would like more details.
Currently, many other heuristics are also used and this is an active area of interest (with a
lack of theoretical understanding).
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A look�ahead

We now actually have a clean picture of the basic structure of a neural network. After
the past two classes, we have also seen many of the standard tricks for learning the
high-dimensional, non-convex optimization function required for fitting the weights and
biases in a neural network.

After the break, we will cover:

▶ the keras library, a python module for building and fitting neural networks much
more efficiently

▶ convolutional modules (or CNNs)

▶ recurent modules (or RNNs)

Note that the last two things are simply different module types, other than the linear,
activation, or cost layers. Historically they are described as different types of neural
networks, but I do not feel that is a fruitful way of thinking about them.
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