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Notes:

▶ Problem set 6 is online and due next Friday, April 8th

▶ Problem sets 7,8, and 9 will be due on the remaining Fridays

▶ No class on April 11th or 13th
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Convolutional�Neural�Networks

Convolution layers are a slightly more exotic variant on the dense linear layers we have
been using so far. They simultaneously address several issues that are commonly seen in
computer vision applications:

▶ We want to utilize the known geometry of the data (color channels and locality)

▶ Larger images require an enormous number of weights for even modestly sized
hidden layers. Using 96x96 pixel images and a single hidden layer with 1024 nodes,
requires just under ten million individual weights!

▶ Many applications require detecting or recognizing items that may be placed
differently in the image field; it will be useful to have a method that is insensitive to
small shifts in the individual pixels.

I’ll restrict today’s discussion to 2D-convolutions, as they are generally used in image
processing, but note that they can also be applied to 1D, 3D and higher dimensions
(we’ll use 1D in the text analysis applications).
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Convolutional�Neural�Networks, cont.

We can think of convolutional layers as being the same as a dense/linear layer, with two
constraints applied to the weights and biases.

▶ Sparsity with local receptive field: the weight and biases for a given neuron are only
non-zero over a small, local region of the input image.

▶ Shared weights: the non-zero weights and biases are the same across all of the
neurons, up to a shifting over the image.

A picture should make this much more clear.
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Filters

What we have just described is what we call a filter; a convolutional layer is made up of
some predetermined number of filters. That is, we have multiple set of local weights that
are applied over small chunks of the image. These allow us to capture different
components that may all be useful for the classification task at hand.
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Filters: History

The idea of using a filter on images is not a new idea to neural networks; the difference
here is the filters are adaptively learned from data.

For example, take the following fixed kernel weights:(
1 0
0 −1

)
What happens when we apply this over an image?
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A convolutional layer with 3 filters:
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Zero�padding

You may have noticed that the grid of pixels of the output image will have fewer rows
and columns than the input image. In some cases this is okay, but it is often
advantageous to preserve the size of the grid (there are several reasons that we want to
grid size to be divisible by 2n for some reasonably large n). To do so, we can add extra
rows and columns of zeros (zero padding) to the input before applying the
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Kernel�and�stride

The architecture of a (2D) convolution layer is primarily determined by four numbers:

1. the number of filters, F

2. the height of the kernel, kh

3. the width of the kernel, kw

4. the stride, ks

The stride tells us how far the local set of weights is shifted before being applied. We’ll
mostly use a stride of 1, but just note that other values are possible.
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A 5x5 kernel:
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A stride of 1:
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A nice demo of applying convolution over a grid using alternative strides and zero
padding:

http://cs231n.github.io/assets/conv-demo/index.html
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Tensors

A convolution can also be described in purely algebraic terms. We are defining a map
from a three dimensional space to a three dimensional space:

F1 × W1 × H1 → F2 × W2 × H2

Where F is the number of filters, W the width of the image, and H the height of the
image. You can now see why tensors are considered a generalization of a matrix
operations, and why they are so important in learning neural network models.

The value F1 is equal to one for the MNIST dataset, but for CIFAR-10 we would set it to
3 to deal with the 3 color channels.
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Pooling�layers

Convolutional neural networks have another type of layer that can also be described by
applying a function locally to small section of the image. These layers are called pooling
layers; they differ from convolution layers because:

▶ they have no learned weights

▶ may not be linear functions of their inputs

▶ are applied separately to each kernel

▶ the stride is usually equal to the size of the kernel; that is, the regions are
non-overlapping

The most common type of pooling (by far) is called max-pooling, with a 2x2 kernel and
stride of 2. This halves the extent of each dimension (reduces the number of data points
by a factor of 4 for 2D images) and can greatly decrease the learning time and improve
over-fitting of the data.
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Max pooling using a 2x2 filter and a stride of 2:

19/22



An example of convolution followed by max pooling:
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Let’s now apply convolutional networks to the MNIST dataset using the keras library.
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A demo of applying convolutional neural networks to the MNIST dataset:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
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