L.ecture 19
Computer Vision 11

06 April 2016

Taylor B. Arnold

Yale Statistics Yale
STAT 365/665

1/52

Convolutional Models in Computer Vision

There is a long history of specific advances and uses of convolutional neural networks. Today, I'll
focus on the following set of models:
> LeNet-5 (1998)
AlexNet (2012)
OverFeat (2013)
VGG-16, VGG-19 (2014)
Googl.eNet (2014)
PReLUnet (2015)
ResNet-50, ResNet-101, ResNet-152 (2015)
SqueezeNet (2016)
Stochastic Depth (2016)
> ResNet-200, ResNet-1001 (2016)

When you hear about these models people may be referring to: the architecture, the architecture
and weights, or just to the general approach.

vV V.YV V.V VvV VY

2/52

AlexNet (2012

A model out of the University of Toronto, now known as AlexNet, became the first CNN
to produce state-of-the-art classification rates on the ILSVRC-2012 dataset:

Krizheosky, Alex, llya Sutskever, and Geoffrey Iv. Hinton. “Imagenet classification
with deep convolutional neural networks.” In Advances in neural information
processing systems, pp. 1097-1105. 2012.

3/52

AlexNet contributions

AlexNel was the first to put together several key advances, all of which we have already
used or discussed in this class:

relu units
dropout

data augmentation

2w o=

multiple GPUs

While not all invented by the AlexNet group, they were the first to put them all together
and figure out how to train a deep neural network.

4/52

192 178 2048 2048 \dense

13 dense dens

1000

192 128 Max L L
Max . Mk pooling 204 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896-43,264—
4096-4096-1000.

5/52

Visualizing CNNs (2013)

Following the success of AlexNet, the year 2013 saw a much larger number of neural
network entrants into the ILSVRC competition. The winning entry came about due to
the visualization techniques described in the following paper:

Zeiler, Matthew D., and Rob Fergus. “Visualizing and understanding convolutional
networks.” Computer vision-L'CCV 2014. Springer International Publishing, 2014.
818-833.

Their incredibly diverse set of techniques allowed the team to tweak the AlexNet
architecture to get even better results.

6/52

(a) Input Image

(b) Layer 5, strongest feature map

®True Label: Car Wheel

(c) Layer 5, strongest

feature map projections

(d) Classifier, probability
of correct class

() Classifier, most
probable class

‘Afghan hound
roon setter

rish sefter

Wortamoara

Canonicsl Dtsrce
Canonicad Dstance

w %m0 2w ®

Canorica Ditance
‘CanonicalDismnos

. 3 c4
|l |
p— "o
2 f
i H p
2 2. ~ |
3 3) 111
= o 1Rl
5 g it
e o e
— s |
e
o] Atecan Gy i
w0 e 9% 3 % e _m_ mw % w0 S % m w0 20 a0
Fton Degrees oo o Artatan Cigroes

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

8/52

Layer 3

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a different block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to

pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.

9/52

(c) (d) (€)]

Figure 6. (a): lst layer features without feature scale clipping. Note that one feature dominates. (b): lst layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al,, 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

10/52

image size 224

110

filter size 7
stride 2 96
i 3x3 max ma@cun(raﬁ\
stride 2 norm.
®3 55 B
2
Input Image
Layer 1

26

pool| | contrast
stride 2| |norm.

13 @3
1 w256

Layer 2

256
3x3 ma)ﬂ \

Layer 3

Layer 4

Layer 5

4096

Layer6 Layer7

class

unit softmax

Output

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final layer is a C-way softmax
function, €' being the number of classes. All filters and feature maps are square in shape.

11/52

A demo of applying these techniques to the MNIST dataset with ConvNelJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

12/52

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

OverFeat (2013)

The 2013 competition also brought about the incredibly influential OverFeat model from
a team based at NYU:

Sermanet, Pierre, David Ligen, Xiang Zhang, Michaél Mathieu, Rob Fergus, and
Yann LeCun. “Overfeat: Integrated recognition, localization and detection using

convolutional networks.” arXiv preprint arXiv:1312.6229 (2013).
The won the image localization task, by trying to solve localization and identification in a

unified process. I'll give a very simplified version of what they did (the paper is a great
read, and | suggest working through it if you are interested in computer vision).

13/52

| e |+ |

Output

Layer 1 2 3 4 5 8
Stage conv + max | conv + max conv conv conv + max full full full
channels 96 256 512 1024 1024 3072 | 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 - - -
Conv. stride 4x4 1x1 1x1 1x1 1x1 - - -
Pooling size 2x2 2x2 - - 2x2 - - -
Pooling stride 2x2 2x2 - - 2x2 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1

Table 1: Architecture specifics for fast model. The spatial size of the feature maps depends on
the input image size, which varies during our inference step (see Table[5]in the Appendix). Here
we show training spatial sizes. Layer 5 is the top convolutional layer. Subsequent layers are fully
connected, and applied in sliding window fashion at test time. The fully-connected layers can also
be seen as 1x1 convolutions in a spatial setting. Similar sizes for accurate model can be found in

the Appendix.

14/52

15/52

=1

5
[Spde

i

I LELH 1

16,52

B [CR |
T mOE
5x5

10x10
1x1 1x1
14x14 2 cae Lo 2 L
convolution pooling conv conv conv
[|1 J1 1
input 1st stage classifier output
H B E " B " B
H 2x2 2x2 2x2
& 6x6
HHI\IHH7
12x12 2x2 5x5 1x1 1x1
4>
convolution pooling conv conv conv

| I I I

input 1st stage classifier output

Figure 5: The efficiency of ConvNets for detection. During training, a ConvNet produces only a
single spatial output (top). But when applied at test time over a larger image, it produces a spatial
output map, e.g. 2x2 (bottom). Since all layers are applied convolutionally, the extra computa-
tion required for the larger image is limited to the yellow regions. This diagram omits the feature
dimension for simplicity.

17/52

Python demo I: OverFeat adaptation of AlexNet (2012)

18/52

VGG-16, VGG-19 (2014)

One of the top entries from 2014, by an Oxford-based team, took advantage of
significantly deeper models.

Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition.” arXiv preprint arXiv:1409. 1556 (2014).

19/52

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers arc added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv(receptive ficld size)- (number of channels)”.
The ReLU activation function is not shown for brevity.

ConvNet C
A | ALRN | B o] D T E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight ‘ 19 weight
layers layers layers layers layers layers
nput (224 x 224 RGB image)

conv3-64 | comvi-64 | com3-64 | comvi-64 | comvi-64 | com3-G4
| LRN conv3-64 conv3-64 conv3-64 ‘ conv3-64

maxpool
Conv3-128 | conv3-128 | conv3-128 | com3-128 | comv3-128 | comv3-128
| |conv3—128 conv3-128 |com'3—IZE ‘ conv3-128

maxpool
Comv3-256 | conv3-256 | comv3-256 | comv3-236 | comv3-256 | comv3-256
conv3-256 | conv3-256 | conv3-256 | comv3-256 | comv3-256 | comv3-256
conv1-256 | conv3-256 | conv3-256
conv3-256

‘maxpool
com3-512 | conv3-512 | conv3-512 | com3-512 | comv3-512 | comv3-512
conv3-512 | conv3-512 [conv3-512 | conv3-512 | conv3-512 | conv3-512
conv1-512 | conv3-512 | comv3-512
conv3-512

‘maxpool
conv3-312 | conv3-312 | conv3-512 | comv3-512 | comv3-312 | comv3-312
conv3-512 | conv3-512 | conv3-512 | comv3-512 | comv3-512 | comv3-S12
convl-512 | conv3-512 | conv3-512
conv3-512

Taxpool

FCA096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in mil

ons).

[AALRN | B

C D

Network
Number of

[133|133 | 134 | 138 |

|
T3 |

20/52

Python demo II: Pre-trained VGG-19 Model

21/52

GoogLeNet (2014)

The winning entry from 2014, by Google, also took advantage of much deeper
architectures:

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Angueloo, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
deeper with convolutions.” In Proceedings of the IEEL Conference on Computer
Vision and Pattern Recognition, pp. 1-9. 2015.

They called their model Googl.eNet in honor of the original LeNet architecture.

22/52

A WENEEDTOG0

- DEEPER

Filter
concatenation

i

—_—
.

1x1 convolutions

3x3 convolutions

5x5 convolutions 3x3 max pooling

-

Previous layer

(a) Inception module, naive version

Fitter
concatenation

—
33 5x5 1x1
1xt i L]] L)
ﬂlmns Tx1 convolutions 3x3 max pooling
J L

Previous layer

—

(b) Inception module with dimension reductions

Figure 2: Inception module

24/52

type ‘ P":::_’i:f"j "‘s‘:::t | depth l #1x1 ﬁ;g #3x3 ii;f ‘ #5%5]1:"“[]'; l params ‘ ops |
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56x 56 x 64 0

convolution 3x3/1 56x56x192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TXTx1024 2 384 192 384 48 128 128 1388K 7IM
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K M
softmax 1x1x1000 0

Table 1: GoogLeNet incarnation of the Inception architecture

25/52

26/52

Python demo I1I: GooglLeNet - Inception Module

27/52

| Relative Confusion | Al A2
Human succeeds, GoogLeNet succeeds 1352 219
Human succeeds, GoogLeNet fails T2 8
Human fails, GoogLeNet succeeds 46 24
Human fails, GoogLeNet fails 30 7
Total number of images 1500 258
Estimated GoogLeNet classification error | 6.8% 5.8%
Estimated human classification error 51% | 12.0%

Table 9 Human classification results on the ILSVRC2012-
2014 classification test set, for two expert annotators Al and

A2. We report top-5 classification error.

28/52

Batch Normalization (2015)

Not a model architecture itself; but one very useful new tweak in the past year has been
Batch Normalization, first presented in this paper:

loffe, Sergey; and Christian Szeged)y: “Batch normalization: Accelerating deep
network training by reducing internal covariate shifi.” arXiv preprint
arXiv:1502.03167

29/52

Python demo IV: Batch normalization

30/52

PReL.Unet (2015)

Microsofts first contribution in 2015 was the idea of using a modifed Rel.U activation
function:

He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-level
I . 7
: e : .
performance on imagenet classification.” Proceedings of the IEEE International
Conference on Computer Vision. 2015.

31/52

fot ot
fo) =y fo)=y

f»=0 y
fo)=ay

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

32/52

ResNet-50, -101, -152 (2015)

Finally, in the 2015 competition, Microsoft produced an model which is extremely
deeper than any previously used. These models are known as ResNet, with their dopth

given as an suffix.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” arXiv preprint arXie:1512.03385 (2015).

33/52

weight layer

F(x) l relu

weight layer

X
identity

Figure 2. Residual learning: a building block.

34/52

ResNet-18 ' "-’v"«-’\/wx«»\»v,r»u\,
} . ——ResNet-34 34-[5)01
40 50 2ty 10 20 30 40 0
iter. (le4)

0 30

iter, (1e4)
Figure 4, Training on ImageNet., Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts,

35/52

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 7%, 64, stride 2
3% 3 max pool, stride 2
[1x1,64] [1x1,64] [1x1,64]
N | PR { g:;z 2 { g:;z 3 3x3,64 | x3 3x3,64 | %3 3x3,64 | %3
: ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
[1x1,128] [1x1,128] [1x1,128]
conv3x | 28x28 [gxg ;ig }xz [gxg gg }xd Ix3,128 | x4 3%3, 128 | x4 3%3, 128 | x8
L e | 1x1,512 | | 1x1,512 | | 1x1,512 |
1x1, 256 1x1,256] 1x1,256]
convd x | 14x14 [gxg igg %2 [;x; igg %6 || 3x3,256 |x6 || 3x3,256 |=x23 || 3x3,256 |x36
s 2 1x1, 1024 1x1,1024 | 1x1,1024 |
1x1,512 1x1,512 1x1,512
comvSx | 7x7 [gxggg }x2 [gxg gg }xs 3x3,512 [x3 | | 3x3,512 |x3 3x3,512 | x3
s 22 1x1,2048 1x1, 2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° | 3.6x10° | 3.8x10° | 7.6x10° 11.3x10°

36/52

100d Sne

*SIUBLIEA 1OU)O PUE S[TRIOP dI0UT
SMOUS T I[QB], *SUOISUSWIIP dSBIIOUT SINOMOYS PANIOP YL, "(SAOTI
uor[[iq 9'¢) s1oke| 1ojowered ¢ YIM JIoM)oU [enpisal B Jy3ry
*(sdO'Td Uor[Iq 9°¢) s1oke] 110wered ¢ Yim Sromiou urerd e [P
PIAl "90URIRJAI © S (SJOT UoNIIq 9'61) [T¢] 19pow 61-DDA
Y PO "IONS3eW] 10J SAIMOANIYOIR YIomiau d[dwrexy ‘¢ I3ty

%

100d Sne

A

TComes] [omwes]

oo]

[dusmoexe | 2/ ‘ood

m!ﬂﬁm.

omese]

e

[emene]

onese]

[onene]

[emene]
[oszmoexe [esznumee | [asmeee |
[Coime Coew] [Cose]
[wsnwse | [usaweoe] o
e R T
_Hﬁ e | Hﬁ e | _M noee |

| |

[mssee | 2/ oo
Vo hio3 oo
A A
oS 6 Tomios 6
[wmwee] [ssrmieee]
7y
[mmoee |]
7y
19 M0 BXE [wwoee |]
Y A
omoeE | |]
X
2/100d 2/ ‘jood
A A A
[o [y muos o ser o exe |
2/ ‘lood
aseun steu aseu
|enpisas JaAe-yE ureld JaAe|-yE 6T-99A

oz
ndino

Lo
andino

oz
ndino

sz:ons
ndino

95:9m5
ndno

2 ans

ndino

vz oms

ndino

37/52

Python demo V: ResNet Unit (2015)

38/52

Stochastic Depth Models (2016)

Another tweak on the ResNet architecture, which subsamples layers in the network:

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger. “Deep Networks
with Stochastic Depth”, arXiv preprint arXiv:1603.09382 (2016).

Notice how this seems like an almost obvious thing to try given the ResNet architecture,
but less-so in a generic neural network.

39/52

active inactive

.
.
|
I
.
|
.
,
e
-]
.
.
1 "
-
|
.
|
.
.
=
.
.
.
.
1 I'.
A | ——
-4
l I
1]
i II
|
,
e
-]
|
|
.
.
|
s
o

Fig. 2. The linear decay of p; illustrated on a ResNet with stochastic depth for pp=1
and pr = 0.5. Conceptually, we treat the input to the first ResBlock as Hyp, which is
always active.

40/52

ResNet-200, -1001 (2016)

Microsoft’s update to last year’s model. Posted only two weeks agol!

He, Kaiming, et al. “ldentity Mappings in Deep Residual Networks.” arXiy preprint
arXiv:1603.05027 (2016).

41/52

ResNet-1001, original (error: 7.61%)

At X “ ResNet—1001, proposed (error: 4.92%)
f. P~ \
BN L% 15
1 L
BN RelU 02 e i,
l "ﬂu’ul",]{l‘,,qml“,-mt sy
ReJ'LU weight % 5
we'tght BN :g g
) g £
BN RelU
- 002 F
addition I
Rel addition
Xi+1 XH1
3 0002
(a) original (b) proposed 0

Iterations x10*

Figure 1. Left: (a) original Residual Unit in [1]; (b) proposed Residual Unit. The grey
arrows indicate the easiest paths for the information to propagate, corresponding to
the additive term “x;” in Eqn. (forward propagation) and the additive term “1” in
Eqn.@ (backward propagation). Right: training curves on CIFAR-10 of 1001-layer
ResNets. Solid lines denote test error (y-axis on the right), and dashed lines denote
training loss (y-axis on the left). The proposed unit makes ResNet-1001 easier to train.

42/52

SqueezeNet (2016)

A new line of research involves looking at ways to produce near state-of-the-art results
with a minimal model size (or minimal computational cost):

landola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size.” arXiv preprint arXiv:1602.07360 (2016).

43/52

"labrador
retriever

dog"

Figure 2. The SqueezeNet architecture

4452

squeele

1x1 convolution filters

e%?and

qqqujj
Ry (OF | g J g 1= 1s)
g s s |

1x1 and 3x3 convolution filters

Figure 1. Organization of convolution filters in the Fire module. In
this example, 5121 = 3, e1x1 = 4, and esza = 4. We illustrate the
convolution filters but not the activations.

45/52

Table 2. Comparing SqueezeNet to model compression approaches. By model size, we mean the number of bytes required to store all of the
parameters in the trained model.

DNN Compression Data Onginal — Compressed Reduction in Model Size Top-1 ImageNet Top-5 ImageNet
architecture Approach Type Model Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD [] 32 bit 240MB — 48MB 5x 56.0% 79.4%
AlexNet Network 32 bit 240MB — 27MB 9x 57.2% 80.3%

Pruning [7]
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 572% 80.3%
Compression[]
SqueezeNet None 32 bit 4.8MB 50x 57.5% 80.3%
(ours)
SqueezeNet Deep 8 bit 4.8MB — 0.92MB 258x 57.5% 80.3%
(ours) Compression
SqueezeNet Deep 6 bit 4.8MB — 0.52MB 461x 57.5% 80.3%
(ours) Compression

46/52

Microsoft Common Images in Context (MS COCO)

cocodataset@outiock.com
People Explore Dataset External

What is Microsoft COCQO? Collaborators

F k H i A Tsung-Yi Lin Cornell Tech CORNELL
— Genevieve Patterson Brown T 1
TECH

Matteo Ruggero Ronchi Caltech

Microsoft COCO is a new image recognition, e e Caltech
segmentation, and captioning dataset.
Microsoft COCO has several features: Michael Maire TTI Chicago

facebook

Serge Belongie Cornell Tech

& Object segmentation

« Recognition in Context Lubomir Bourdev UC Berkeley
« Multiple objects per image Ross Girshick Facebook Al
i James Hays Georgia Tech Toyota Technological

o More than 300,000 images 5 indtna st Cio
 More than 2 Million instances fistra Paren Cokuch .)

o < . eorgia
B0 object categories Deva Ramanan CHU S
" 5 captions per image Larry Zitnick Facebook AT

Microsoft Research
Piotr Dollar Facebook Al

NEWS: Congratulations to the 2015 Detection Challenge winners!
- . 47/52

i R, e
4 rA;’s
) »

[-
(a) Category labeling (b) Instance spotting (c) Instance segmentation

Fig. 3: Our annotation pipeline is split into 3 primary tasks: (a) labeling the categories present in the image (§4.1),
(b) locating and marking all instances of the labeled categories (§4.2), and (c) segmenting each object instance (§4.3).

48/52

person, sheep, dog

(a) Image classification

\

(c) Semantic segmentation (d) This work

49/52

The man at bat readies to swing at the Alarge bus sitting next to a very tall
pitch while the umpire looks on. building.

50/52

More information is found on their website, http://mscoco.org/, and in the paper
describing the dataset:

Lin, Tsung-Yi, et al. “Microsoft coco: Common objects in context.” Computer
Vision-l:CCV 2014. Springer International Publishing, 2014. 740-755.

I should mention that Microsoft’s own entry (ResNet) essentially swepl every winning
metric with their technique.

51/52

http://mscoco.org/

Video Classification

I don’t want to make it sound as though the only interesting research in computer vision
with neural networks involves one of these large public competitions (though the biggest
conceptual advances have come out of these). For example, an influential paper doing
video scene classification

Karpathy, Andrej, George Toderict, Sanketh Shetty; Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei. “Large-scale video classification with convolutional
neural networks.” In Proceedings of the IELL conference on Computer Vision and
Pattern Recognition, pp. 1725-1752. 2014.

Which yields a fantastic video demonstration of the outpul:
https://www.youtube. com/watch?v=qrz{_AB1DZk

52/52

https://www.youtube.com/watch?v=qrzQ_AB1DZk

