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Notes

» Problem sets 7 and 8 will be returned by Thursday (maybe early Friday)
» Problem set 9 is due next Monday

> Blog posts coming soon!
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Abstract

We propose a unified neural network architecture and learning algorithm that can be applied
to various natural language processing tasks including: part-of-speech tagging, chunking,
named entity recognition, and semantic role labeling. This versatility is achieved by trying
to avoid task-specific engineering and therefore disregarding a lot of prior knowledge.
Instead of exploiting man-made input features carefully optimized for each task, our system
learns internal representations on the basis of vast amounts of mostly unlabeled training
data. This work is then used as a basis for building a freely available tagging system with
good performance and minimal computational requirements.

Keywords: Natural Language Processing, Neural Networks
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The full citation:

Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kayukcuoglu,
and Pavel Kuksa. “Natural language processing (almost) from scratch.” The Journal
of Machine Learning Research 12 (2011): 2493-2537.
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One of the earliest theoretical results relating to neural networks:

Barron, Andrew. “Universal Approximation Bounds for Superpositions of a
Stgmoidal Function.” IEEE Transactions on Information Theory; Vol. 39, No.3, May
1993.
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Consider functions of the form:

Jinl@) = Z ¢k - o(agz+ by) + co

k=1

Which map R% into R.

This is a neural network with one hidden layer and a single output. The parameters ay
are the hidden weights, the by are the biases, ¢ are the output weights, and cg is the
output bias.
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In the paper it is shown that for a large class of functions f, we can find a neural network
such that:

n

[ @ - i@y s 0% -

For some constant C' > 0.

This i1s a formal proof that even shallow neural networks are universal approximators.
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Only recently have we seen theory addressing how well neural networks can reconstruct
generative models under noisy observations. Two of the most well-known include:

Bengio, Yoshua, et al. “Generalized denoising auto-encoders as generative models.”
Advances in Neural Information Processing Systems. 2013.

And:
Alain, Guillaume, and Yoshua Bengio. “What regularized auto-encoders learn from
the data-generating distribution.” The Journal of Machine Learning Research 15.1

(2014): 3563-3593.

[f you are interested in this line of work, | suggest setting up an arXiv alert for people
such as Yoshia Bengio, Guillaume Alain, Razvan Pascanu, and Guido Montufar.
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DEPTH
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So if shallow neural networks can represent arbitrary functions, why have we been
creating deeper and deeper networks? A recent theoretical paper tries Lo explain why
deeper networks perform significantly better:

Montufar, Guido F., et al. “On the number of linear regions of deep neural networks.”
Advances in neural information processing systems. 2014.
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Figure 2: (a) Space folding of 2-D Euclidean space along the two axes. (b) An illustration of how the
top-level partitioning (on the right) is replicated to the original input space (left). (c) Identification

of regions across the layers of a deep model.
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Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially
identify symmetries in the boundary that it needs to learn.
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A summary of one result from the paper: A dense neural network with rectified linear
activations having ng input units and L hidden layers of width n > ng can compute

function that have:
(L—l)‘no
Q o n'o
o

Number of linear regions. This shows that the expressibility of the network grows
exponentially with L but only polynomially with n.

So, deeper models approximate a larger class of functions with fewer parameters.
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Deep learning Example:
Shallow

Example: autoencoders
MLPs

Representation learning

Machine learning
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REPRESENTATION

23/41



. Problem Set 8 part 1
I1. Problem Set 8, Part 2
111. Transfer Learning: IMDB Sentiment analysis
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Neural networks have had amazingly successful results learning things such as basic
mathematical operations:

Franco, Leonardo, and Sergio A. Cannas. "Solving arithmetic problems using
feed-forward neural networks.” Neurocomputing 18.1 (1998): 61-79.
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IV. Learning addition

26,41



There as also been work on using neural networks to capture subjective features such as
painting style:

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of’
artistic style.” arXiv preprint arXiv:1508.06576 (2015).
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FUTURE
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Near-term popular areas of study in deep learning:

» compression of neural networks

» consolidating the CNN tricks and tips; when will this ever slow down
or end?

» deep residual neural networks
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A robot at work:

http://www.youtube.com/watch?v=2yRRNGr_4yY&t=1mOs
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http://www.youtube.com/watch?v=2yRRNGr_4yY&t=1m0s







To me, one of the more exciting papers on deep learning produced in the past year:

Gregor, K., Danihelka, 1., Graves, A., & Wierstra, D. (2015). DRAW: A recurrent
neural network for image generation. arXiv preprint arXiv:1502.04623.

[t makes meaningful departures from prior methods and gets more directly at the

generative model. Itis also closer to our understanding of how visual processing
happens in the brain.
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Figure 1. A trained DRAW network generating MNIST dig-

its. Each row shows successive stages in the generation of a sin-

gle digit. Note how the lines composing the digits appear to be

“drawn” by the network. The red rectangle delimits the area at-

tended to by the network at each time-step, with the focal preci- 39 / 41
sion indicated by the width of the rectangle border.



Longer-term areas in deep learning:

» deep reinforcement learning
» better architectures or training algorithms

» (real) unsupervised learning
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THANKS!



